首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We have recently observed that S-(2-hydroxyethylmercapto)-L-cysteine (L-CySSME), the mixed disulfide of L-cysteine and 2-mercaptoethanol, prevented cataracts induced in mice by acetaminophen (ACP) by functioning as a prodrug of L-cysteine and protecting the liver. This prompted the evaluation of the more lipophilic N-acetyl (Ac-CySSME) and ethyl ester (Et-CySSME) derivatives of L-CySSME as pro-prodrug forms, as well as the “D” enantiomer, as hepatoprotective agents. Serum ALT levels were measured at 24 hours after a toxic but nonlethal dose of ACP that insured 48 hour survival of the animals. Since the increases in ALT produced were highly variable (even after log transformation) and complicated the statistical analyses, we calculated confidence intervals for the mean ALT levels for each treatment group. This enabled comparisons to be made of the efficacy of L-CySSME as well as Ac-CySSME and Et-CySSME with other representative prodrugs of L-cysteine, namely, 2(RS)-methylthiazolidine-4(R)-carboxylic acid (MTCA), L-2-oxothiazolidine-4-carboxylic acid (OTCA), and N-acetyl-L-cysteine (NAC), in protecting the liver. It was shown that L-CySSME and MTCA administered intraperitoneally at 2.5 mmol/kg were superior to the other cysteine prodrugs at equimolar doses in protecting mice from hepatotoxicity elicited by a 400 mg/kg (2.65 mmol/kg) dose of ACP given i.p. 30 minutes prior to the prodrugs. The “D” form of CySSME was totally without protective effect. Oral doses of the prodrugs even at 2× the i.p. dose were less effective, although MTCA was the most protective. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 11: 289–295, 1997.  相似文献   

2.
The effect of a cysteine prodrug, L-2-oxothiazolidine-4-carboxylic acid (OTCA), on certain aspects of the metabolism and toxicity of bromobenzene administered acutely to mice was investigated by (i) characterizing the influence of OTCA on the metabolic profile of low and high bromobenzene dose at 0-6, 6-12, and 12-24 h, (ii) determining the effective doses range and administration time for OTCA, as well as the optimum period for urine sampling; and (iii) measuring the efficacy of OTCA for protection against bromobenzene induced toxicity. Coadministration of OTCA and bromobenzene enhanced the urinary excretion of mercapturic acid and phenolic metabolites, during 6-12 h, by approximately 152 and 193%, respectively. Maximum efficacy was observed when OTCA (16.0 mmol/kg) was administered concomitantly with bromobenzene (4.0 mmol/kg). Finally, OTCA administration was found to afford substantial protection against elevation of plasma transaminases used as indices of bromobenzene-induced hepatotoxicity. N-acetylcysteine, another cysteine prodrug, had essentially similar effects on the metabolism and toxicity of bromobenzene. Thus, administration of cysteine prodrugs enhances the urinary excretion of several metabolites of bromobenzene and affords protection against bromobenzene-induced hepatotoxicity.  相似文献   

3.
Metabolic disposition of ethylene oxide, dibromoethane, and acrylonitrile in rats after acute exposure was studied by examining the relationship between dose and urinary metabolites, and by establishing the influence of a glutathione precursor, L-2-oxothiazolidine-4-carboxylic acid (OTCA), on the above relationship. Respective urinary metabolites, hydroxyethylmercapturic acid, cyanoethylmercapturic acid, thiocyanate, and ethylene glycol, were quantified to estimate the extent to which each compound was metabolized. The animals were given either ethylene oxide (0.34, 0.68, or 1.36 mmol/kg), dibromoethane (0.2, 0.4, or 0.6 mmol/kg), or acrylonitrile (0.10, 0.38, or 0.76 mmol/kg). Urine samples were collected at 24 h. The metabolic biotransformation of all three chemicals to their respective mercapturic acids was strongly indicative of saturable metabolism. Administration of OCTA (4-5 mmol/kg) enhanced gluthathione availability and increased excretion of urinary mercapturic acids at the higher doses of the chemicals. This study indicates that OTCA increases the capacity for detoxification via the glutathione pathway thereby partially correcting the nonlinearity between the administered dose of ethylene oxide, dibromoethane, and acrylonitrile and the amount of certain urinary metabolites.  相似文献   

4.
p-Aminophenol (PAP) is a widely used industrial chemical and a known nephrotoxin. Recently, it was found to also cause hepatotoxicity and glutathione (GSH) depletion in mice. The exact mechanism of liver toxicity is not known. The aims of this study were to determine whether PAP can cause acute hepatotoxicity in hamsters and to further investigate the role of GSH in PAP-induced toxicity. PAP was administered ip to hamsters in doses of 200-800 mg/kg. Liver damage at 24 h after PAP administration was assessed by elevations in plasma enzyme activities and histopathologic examination. GSH and cysteine (Cys) levels in liver at 4 h were determined by HPLC. PAP decreased hepatic GSH concentration to 8% and Cys to 30% of vehicle control values. It increased plasma glutamic pyruvic transaminase (GPT) activity by 47-fold and sorbitol dehydrogenase (SDH) activity by 113-fold. PAP also caused severe centrilobular hepatocellular necrosis. 2(RS)-n-Propylthiazolidine-4(R)-carboxylic acid (PTCA), a Cys precursor, attenuated the PAP-induced decreases in hepatic sulfhydryl levels; GSH and Cys were 39% and 78% of vehicle controls, respectively. PTCA also attenuated the PAP-induced elevations in plasma enzyme activities and hepatic necrosis. It was concluded that PAP hepatotoxicity is associated with depletion of hepatic GSH and can be prevented by PTCA.  相似文献   

5.
Summary. Taurine has several biological processes such as hypoglycemic action, antioxidation, detoxification, etc. To assess the effect of taurine administration on the guinea pigs with hyperglycemia, blood glucose, C-peptide levels together with morphologic alterations in the pancreatic ultrastructure were investigated in terms of hypoglycemic action and malondialdehyde and total sulfhydryl group levels with regard to oxidation-antioxidation relation. Animals were divided into four groups of six. Glucose supplementation group was administrated a single dose of glucose (400mg/kg, i.p.) injection. Glucose and taurine supplementation group was administrated glucose treatment (a single dose, 400mg/kg, i.p.) following taurine (a single dose, 200mg/kg, i.p.). Taurine and glucose supplementation group was administered taurine treatment (a single dose, 200mg/kg, i.p.) following glucose treatment (a single dose, 400mg/kg, i.p.). Control animals received no treatment. Blood samples were collected at the end of the experiments for the determination of glucose, C-peptide (indicator of insulin secretion), lipid peroxidation (thiobarbituric acid reactive substances), and total sulfhydryl groups levels. Pancreatic tissue samples were then collected and processed for transmission electron microscopy. The findings showed that glucose supplementation following taurine administration significantly decreased blood glucose level by increasing C-peptide level and the pancreatic secretion stimulated morphologically and insignificantly changed thiobarbituric acid reactive substances and total sulfhydryl group levels. These observations suggest that taurine administration may be useful in hyperglycemia because of its hypoglycemic and protective effects.  相似文献   

6.
Interaction of purified human liver and placental alkaline phosphatases (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) with sulfhydryl groups, sulfhydryl reagents, and Mg2+ were studied. L-Cysteine (0.1 mmol/l) or Mg2+ activated the liver enzyme 4-5-fold and the placental enzyme 2-3-fold, with optimal pH 7.5-8.0; these activations were not additive. L-Cysteine (2 mmol/l) inhibited both enzymes maximally at pH greater than 9.0; phosphate protected the enzymes. S-Methylcysteine had little effect, with or without Mg2+. Inhibition by sulfur-containing compounds paralleled their ability to bind Zn2+. Fluoresceine mercury acetate (specific for sulfhydryl groups) inhibited the isoenzymes, whereas iodoacetic acid, iodoacetamide, dithionitrobenzoic acid, and p-chloromercuribenzoate had little effect. The inhibition was reversed by L-cysteine and only slightly protected by inorganic phosphate. Thus, there are two sites on human liver and placental alkaline phosphatase that interact with L-cysteine; a Mg2+-binding site, which results in activation, and a site that involves one or both of the bound Zn2+ ions and results in inactivation. Both enzymes have a protected essential thiol group.  相似文献   

7.
Prophylactic and therapeutic effects of acetylcarnitine against acetaminophen‐induced hepatotoxicity were studied in mice. To evaluate the prophylactic effects of acetylcarnitine, mice were supplemented with acetylcarnitine (2 mmol/kg/day per oral (p.o.) for 5 days) before a single dose of acetaminophen (350 mg/kg intraperitoneal (i.p.)). Animals were sacrificed 6 h after acetaminophen injection. Acetaminophen significantly increased the markers of liver injury, hepatic reactive oxygen species, and nitrate/nitrite, and decreased hepatic glutathione (GSH) and the antioxidant enzymes. Acetylcarnitine supplementation resulted in reversal of all biochemical parameters toward the control values. To explore the therapeutic effects of acetylcarnitine, mice were given a single dose of acetylcarnitine (0.5, 1, and 2 mmol/kg p.o.) 1.5 h after acetaminophen. Animals were sacrificed 6 h after acetaminophen. Acetylcarnitine administration resulted in partial reversal of liver injury only at 2 mmol/kg p.o. At equimolar doses, N‐acetylcystiene was superior as therapeutic agent to acetylcarnitine. However, acetylcarnitine potentiated the effect of N‐acetylcystiene in the treatment of acetaminophen toxicity.  相似文献   

8.
Micronucleus induction in male F344 rat peripheral blood by potassium bromate (KBrO3), a rat renal carcinogen, and its inhibition by several antioxidants were studied using the acridine orange supravital staining method. The frequency of micronucleated reticulocytes (MNRETs) peaked 32 h after a single i.p. treatment of rats with KBrO3 at a dose of 60 mg/kg. Co-treatment with glutathione (GSH) or cysteine (Cys) i.p. at doses of 800 mg/kg and 400 mg/kg, respectively, 30 min before and 30 min after the KBrO3 treatment significantly inhibited the micronucleus induction by KBrO3. Daily i.g. administration of vitamin C for 5 days at a dose of 200 mg/kg/day was also effective in protecting against micronucleus induction by KBrO3 given on the 4th day. However, co-treatment with superoxide dismutase in liposome-encapsulated form by i.p. injection at a dose of 18,000 U/kg 30 min before and 30 min after the KBrO3 application exerted no effect. The results indicate that antioxidants, especially sulfhydryl compounds, have protective potential against the clastogenicity of KBrO3, also suggesting that active oxygen species may play an important role in its clastogenicity.  相似文献   

9.
Influences of biliary ligation and systemic depletion of glutathione (GSH) or modulation of GSH status on the disposition of a low, non-nephrotoxic i.v. dose of inorganic mercury were evaluated in rats in the present study. Renal and hepatic disposition, and the urinary and fecal excretion, of inorganic mercury were assessed 24 h after the injection of a 0.5-micromol/kg dose of mercuric chloride in control rats and rats pretreated with acivicin (two 10-mg/kg i.p. doses in 2 ml/kg normal saline, 90 min apart, 60 min before mercuric chloride), buthionine sulfoximine (BSO; 2 mmol/kg i.v. in 4 ml/kg normal saline, 2 h before mercuric chloride) or diethylmaleate (DEM; 3.37 mmol/kg i.p. in 2 ml/kg corn oil, 2 h before mercuric chloride) that either underwent or did not undergo acute biliary ligation prior to the injection of mercury. Among the groups that did not undergo biliary ligation, the pretreatments used to alter GSH status systemically had varying effects on the disposition of inorganic mercury in the kidneys, liver, and blood. Biliary ligation caused the net renal accumulation of mercury to decrease under all pretreatment conditions. By contrast, biliary ligation caused significant increases in the hepatic burden of mercury in all pretreatment groups except in theacivicin-pretreated group. Blood levels of mercury also increased as a result of biliary ligation, regardless of the type of pretreatment used. The present findings indicate that biliary ligation combined with methods used to modulate GSH status systemically have additive effects with respect to causing reductions in the net renal accumulation of mercury. Additionally, the findings indicate that at least some fraction of the renal accumulation of inorganic mercury is linked mechanistically to the hepato-biliary system.  相似文献   

10.
The effect of route of administration, intraperitoneal (i.p.) or oral gavage (p.o.), in the mouse micronucleus test was studied with K2CrO4 in 2 mouse strains (MS/Ae and CD-1). A simplified acute toxicity test to estimate the toxic dose levels of K2CrO4 showed that the LD50S were 50 mg/kg i.p. and 300 mg/kg p.o. for MS/Ae and 32 mg/kg i.p. and 180 mg/kg p.o. for CD-1. Based on results of a pilot micronucleus test to determine appropriate dose levels and the optimal sampling time, it was decided to sample bone marrow cells of both strains of mice 24 h after i.p. doses of 10-80 mg/kg and p.o. doses ranging from 20 to 320 mg/kg. K2CrO4 administered i.p. induced micronucleated polychromatic erythrocytes (MNPCEs) dose-dependently in both strains. In contrast, when administered p.o. the chemical failed to induce MNPCEs. These results suggest that this difference between i.p. and p.o. routes is related to a difference of absorption or metabolic fate of chromate in vivo.  相似文献   

11.
Acetone potentiation of haloalkane-induced liver injury is a well-known phenomenon. Acetone-treated rats challenged with a trichloroethylene-CCl4 mixture exhibit a more sever liver injury than that predicted by the addition of the single potentiating effects of each. The purpose of the present study was to determine if acetone exerted similar interactions with other haloalkane mixtures. The testing protocol used was designed and performed to allow categorization of interactions occurring among two or three agents. Rats were treated (p.o.) with corn oil or acetone (10.2 mmol/kg) and were administered (i.p.) 18 h later 1,1-dichloroethylene (0.6 mmol/kg), trichloroethylene (5.6 mmol/kg), tetrachloroethylene (19.6 mmol/kg), 1,1,1-trichloroethane (10.0 mmol/kg), 1,1,2-trichloroethane (1.1 mmol/kg), 1,1,2,2-tetrachloroethane (1.0 mmol/kg), CHCl3 (6.2 mmol/kg), CCl4 (1.0 mmol/kg), or a mixture of two haloalkanes (all 28 combinations were tested). Liver injury was assessed 24 h later using plasma alanine aminotransferase activity and a quantitative histological evaluation. In corn oil pretreated rats, the hepatotoxic responses observed for the 28 mixtures were additive for 26 of 28 mixtures and supra-additive for 2 of 28, whereas in acetone-pretreated rats the responses observed were additive for 17 of 28, infra-additive for 10 of 28, and supra-additive for 1 of 28. Mixtures containing 1,1,1-trichloroethane or tetrachloroethylene resulted only in no change in toxicity or infra-additivity. Increased toxic responses (additivity and supra-additivity) were observed with certain binary mixtures containing CCl4, CHCl3, 1,1,2-trichloroethane, or 1,1-dichloroethylene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Food-borne amines have been considered as the potential precursors of endogenous carcinogenic N-nitroso compounds in humans. A compound which yields a direct mutagen after nitrite treatment was isolated from soy sauce and was identified as 1-methyl-1,2,3,4-tetrahydro-2-carboline-3-carboxylic acid (MTCA) (Wakabayashi, et al., 1983). The mutagenicities of other carboline derivatives such as harman, norharman, harmaline, harmalol, harmine, and harmol were studied. Like MTCA, the nitrosated carboline derivatives showed higher mutagenic activity as compared to their corresponding parent compounds. The demethylated analogue of MTCA, 1,2,3,4-tetrahydro-2-carboline-3-carboxylic acid was synthesized and its nitrosated products were shown to be mutagenic to Salmonella typhimurium TA 100 and TA 98. The potent mutagen Trp-P-2 is a typical 3-carboline derivative. The mutagenicity of Trp-P-2 was suppressed remarkably after nitrosation. Several 3-carboline derivatives also showed the similar property. Nitrosation of MTCA gave several derivatives which were isolated and showed direct mutagenicity to Salmonella typhimurium TA 98. Further characterization of these new carboline derivatives is in progress.  相似文献   

13.
Cisplatin is one of the most effective chemotherapeutic agents. However, at higher doses liver injury may occur. The purpose of this study was to explore whether the hydroxyl radical scavenger dimethylthiourea (DMTU) protects against cisplatin-induced oxidative damage in vivo and to define the mitochondrial pathways involved in cytoprotection. Adult male Wistar rats (200–220 g) were divided into four groups of eight animals each. The control group was treated only with an intraperitoneal (i.p.) injection of saline solution (1 ml/100 g body weight). The DMTU group was given only DMTU (500 mg/kg body weight, i.p), followed by 125 mg/kg body weight, i.p. (twice a day) until sacrifice. The cisplatin group was given a single injection of cisplatin (10 mg/kg body weight, i.p.). The DMTU + cisplatin group was given DMTU (500 mg/kg body weight, i.p.), just before the cisplatin injection (10 mg/kg body weight, i.p.), followed by injections of DMTU (125 mg/kg body weight, i.p.) twice a day until sacrifice (72 h after the treatment). DMTU did not present any direct effect on mitochondria and substantially inhibited cisplatin-induced mitochondrial damage in liver, therefore preventing elevation of AST and ALT serum levels. DMTU protected against (a) decreased hepatic ATP levels; (b) lipid peroxidation; (c) cardiolipin oxidation; (d) sulfhydryl protein oxidation; (e) mitochondrial membrane rigidification; (f) GSH oxidation; (g) NADPH oxidation; (h) apoptosis. Results suggest that antioxidants, particularly hydroxyl radical scavengers, protect liver mitochondria against cisplatin-induced oxidative damage. Several mitochondrial changes were delineated and proposed as interesting targets for cytoprotective strategy.  相似文献   

14.
The present study was undertaken to evaluate the protective effect of pterostilbene against acetaminophen‐induced hepatotoxicity. Silymarin was used as a standard hepatoprotective agent. A single dose of acetaminophen (800 mg/kg i.p.), injected to male rats, caused significant increases in serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, bilirubin, total cholesterol, triglycerides, tumor necrosis factor alpha, and hepatic contents of malondialdehyde, nitric oxide, caspase‐3, hydroxyproline, with significant decreases in serum HDL‐cholesterol, total proteins, albumin, and hepatic activities of reduced glutathione, superoxide dismutase and catalase as compared with the control group. On the other hand, administration of each of pterostilbene (50 mg/kg, p.o.) and silymarin (100 mg/kg, p.o.) for 15 days before acetaminophen ameliorated liver function and oxidative stress parameters. Histopathological evidence confirmed the protection offered by pterostilbene from the tissue damage caused by acetaminophen. In conclusion, pterostilbene possesses multimechanistic hepatoprotective activity that can be attributed to its antioxidant, anti‐inflammatory, and antiapoptotic actions.  相似文献   

15.
Mansour MA 《Life sciences》2000,66(26):2583-2591
The effects of thymoquinone (TQ) and desferrioxamine (DFO) against carbon tetrachloride (CCl4)-induced hepatotoxicity were investigated. A single dose of CCl4 (20 microl/kg, i.p.) induced hepatotoxicity, manifested biochemically by significant elevation of activities of serum enzymes, such as alanine transaminase (ALT, EC: 2.6.1.2) , aspartate transaminase (AST, EC: 2.6.1.1) and lactate dehydrogenase (LDH, EC: 1.1.1.27). Hepatotoxicity was further evidenced by significant decrease of total sulfhydryl (-SH) content, and catalase (EC: 1.11.1.6) activity in hepatic tissues and significant increase in hepatic lipid peroxidation measured as malondialdhyde (MDA). Pretreatment of mice with DFO (200 mg/kg i.p.) 1 h before CCl4 injection or administration of TQ (16 mg/kg/day, p.o.) in drinking water, starting 5 days before CCl4 injection and continuing during the experimental period, ameliorated the hepatotoxicity induced by CCl4, as evidenced by a significant reduction in the elevated levels of serum enzymes as well as a significant decrease in the hepatic MDA content and a significant increase in the total sulfhydryl content 24 h after CCl4 administration. In a separate in vitro assay, TQ and DFO inhibited the non-enzymatic lipid peroxidation of normal mice liver homogenate induced by Fe3+/ascorbate in a dose-dependent manner. These results indicate that TQ and DFO are efficient cytoprotective agents against CCl4-induced hepotoxicity, possibly through inhibition of the production of oxygen free radicals that cause lipid peroxidation.  相似文献   

16.
Kanoski SE  Walls EK  Davidson TL 《Peptides》2007,28(5):988-1002
The present studies assessed the extent to which the adiposity signal leptin and the brain-gut hormone cholecystokinin (CCK), administered alone or in combination, give rise to interoceptive sensory cues like those that are produced by a low (1h) level of food deprivation. Rats were trained with cues arising from 1 to 24-h food deprivation as discriminative stimuli. For one group, 24-h food deprivation predicted the delivery of sucrose pellets, whereas 1-h food deprivation did not. Another group received the reversed deprivation level-sucrose contingency. After asymptotic performance was achieved, the effects of leptin and CCK on food intake and on discrimination performance were tested under 24-h food deprivation. In Experiment 1a, leptin administered into the third cerebroventricle (i3vt) at 3.5 or 7.0 microg doses had little effect, compared to saline on food intake or discriminative responding. In Experiment 1b, leptin (7.0 microg, i3vt) combined with CCK-8 (2 microg/kg, i.p.) reduced food intake significantly, but the findings indicated that CCK-8 alone produces interoceptive discriminative cues more like those produced by 1- than 24-h food deprivation. Experiment 2a tested rats with i.p. leptin (0.3 and 0.5mg/kg). Although neither dose suppressed intake, the 0.3mg/kg dose produced interoceptive cues like 1-h food deprivation. Experiment 2b tested two doses of CCK-8 (2 and 4 mg/kg, i.p.) and found significant intake suppression and generalization of discrimination with both doses of CCK-8. These findings suggest a role for both leptin and CCK in the production of sensory consequences that correspond to "satiety".  相似文献   

17.
p-Aminophenol (PAP) is a widely used industrial chemical and a metabolite of analgesics, such as acetaminophen (APAP). It was found recently that PAP, a known nephrotoxicant, could cause acute hepatotoxicity in mice but not in rats. The mechanism of hepatotoxicity is not known. The aim of this study was to investigate the role of N-acetylation of PAP to APAP in PAP-induced toxicity. Male C57BL/6 mice injected intraperitoneally (i.p.) with various doses of PAP were sacrificed at 12 hours for measurement of serum glutamic-pyruvic transaminase (GPT) and sorbitol dehydrogenase (SDH) levels and determination of the extent of hepatic nonprotein sulfhydryl (NPSH) and glutathione (GSH) depletion. Plasma levels of APAP and its metabolites were measured by HPLC after PAP administration. p-Aminophenol depleted NPSH in a dose- and time-dependent manner. Depletion of NPSH in mouse liver occurred at PAP doses above 400 mg/kg. Buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, potentiated the PAP-induced hepatotoxicity. Ascorbate, a reducing agent, did not affect PAP-induced hepatotoxicity and NPSH depletion. After PAP treatment, APAP and its sulfate and glucuronide conjugates as well as GSH conjugates (APAP-cysteine and APAP-mercapturate) were detected in the plasma. The results suggest the roles of GSH and N-acetylation of PAP to APAP in PAP-induced hepatotoxicity.  相似文献   

18.
The administration-time-dependent aspects of the drug interaction between lithium and morphine-induced analgesia were studied using the mouse hot-plate test at six different times of day, each scheduled at 4 h intervals. Lithium treatment alone, in doses of 1 to 10 mmol/kg administered intraperitoneally (i.p.) did not significantly alter test latencies compared to the corresponding clock-time in saline-injected controls. Basal pain sensitivity and morphine-induced antinociceptive activity displayed significant circadian rhythms as assessed by the hot-plate response latencies, with higher values occurring during the nocturnal activity than during the daytime rest span. Acute administration of lithium, in a dose of 3 mmol/kg, 30 min prior to morphine dosing did not influence morphine-induced analgesia compared to all the clock-time test-matched morphine groups, except the 9 HALO (Hours After Lights On) one. There was a prominent potentiation of the morphine-induced antinociception at this biological time during combined drug treatment. The latter finding demonstrates that administration-time-dependent differences in drug-drug interactions need to be considered in both experimental designs and clinical settings.  相似文献   

19.
ABSTRACT

We investigated the potential hepatoprotective effects of misoprostol (MP) on doxorubicin (DOX) induced liver injury in rats using histology and biochemistry. We used 21 male Sprague-Dawley rats divided randomly into three groups: group 1, control; group 2, DOX; group 3, DOX + MP. The control group was injected intraperitoneally (i.p.) with 0.5 ml 0.9% w/v NaCl and given 1 ml 0.9% NaCl orally for 6 days. DOX was administered i.p. as a single dose of 20 mg/kg. MP, 0.2 mg/kg, was given orally for 6 days. Treatment with MP increased high density lipoprotein cholesterol levels and decreased serum alanine aminotransferase, aspartate aminotransferase, low density lipoprotein cholesterol, triglycerides and total cholesterol levels significantly in serum. Increased malondialdehyde level and decreased catalase, glutathione and superoxide dismutase levels caused by DOX were suppressed significantly in liver tissue by MP. DOX + MP reduced loss of body weight. Oxidative stress was decreased, antioxidant activity was increased and histopathological changes were reduced in the DOX + MP group compared to the DOX group. Liver injury caused by DOX was attenuated by MP treatment owing to the antioxidative and anti-apoptotic effects of MP, which might be useful for reducing the severity of DOX induced liver injury.  相似文献   

20.
The sulfhydryl amino acid, D-penicillamine, but not L-cysteine or L-cystine, when administered to disulfiram-treated rats 1 hour before a dose of ethanol lowered the ethanol-derived, circulating blood acetaldehyde to 10% of control values. This was accompanied by a concomitant lowering of AcH in the expired air of penicillamine-treated rats. Since blood ethanol levels were the same in saline injected controls and in sulfhydryl amino acid-treated rats, this lowering of blood acetaldehyde was not due to any malabsorption of ethanol or to inhibition of the enzyme(s) that metabolize ethanol. By administration of D-penicillamine in multiple, divided doses, blood acetaldehyde generated during ethanol metabolism was reduced an average of 70% over an 8 hour period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号