首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 385 毫秒
1.
陈兵  孟雪晨  张东  储玲  严云志 《生态学报》2019,39(15):5730-5745
确定鱼类群落的空间格局是保护和管理河流鱼类多样性的基础。尽管河流鱼类分类群(基于物种组成)的纵向梯度格局已得到大量报道,但其功能群(基于功能特征)的空间格局研究较少。以皖南山区新安江为研究流域,沿其"正源-下游"梯度共设置27个调查样点,分别于2017年5月和10月完成2次调查取样,着重研究了鱼类分类群和功能群结构的纵向梯度格局及其形成机制。共采集鱼类44种,可分为5个运动功能群和4个营养功能群,构成14个"营养-运动"复合功能群。双因素交互相似性分析结果显示,鱼类分类群和功能群均随河流级别显著变化,但两者均无显著的季节变化;根据相似性百分比分析,由1级至3级河流,数量优势物种和功能群的空间变化主要呈嵌套格局,而由3级至5级河流其变化主要呈周转格局。方差分解结果显示,局域栖息地、陆地景观和支流空间位置3类解释变量对分类群和功能群空间变化的解释率分别为33.6%和38.5%,其中,分类群受局域栖息地和支流空间位置变量的显著影响,而功能群受局域栖息地和陆地景观变量的显著影响。研究表明,沿着新安江的"上游-下游"纵向梯度,鱼类分类群和功能群的空间格局基本一致,但两者的形成机制不同:分类群的纵向梯度变化受环境过滤和扩散过程的联合影响,而功能群则主要受环境过滤影响。  相似文献   

2.
3.
In mountains, environmental gradients are steep in both terrestrial and aquatic systems, and climate change is causing upward shifts of physical and biological features of these gradients. Glacial streams are an interesting system to evaluate such shifts both because streams have a linear nature (for simplicity of analysis), and because the stream habitat will at least temporarily lengthen as it follows receding glaciers upward. The Tschierva Glacier, Swiss Alps, receded 482 m upstream from 1997 to 2008. We tested the null hypothesis that the physical and biological stream gradient below this glacier maintained the same structure between these time periods, but simply shifted upward following the glacial source. We compared longitudinal patterns of water temperature and zoobenthic community structure in 1997 and 2007–2008 during three seasons (spring, summer, fall) along the uppermost ca. 5 stream km. Upward shifts were evident, including colonization of the newly exposed stream reaches by cold‐adapted taxa, and the appearance in 2007/2008 of four lower‐altitude species that were previously absent. Overall, however, results rejected the null hypothesis, instead revealing significant changes in gradient structures. These included a more steeply increasing temperature profile downstream of the glacier and increased amplitude of seasonal community turnover in 2007/2008 vs. 1997. Long‐term (1955–2007) flow records revealed increasing short‐term and seasonal hydrologic variability, which might have influenced the increased intra‐annual community variability. The steepening of the temperature gradient was likely caused by a warming lake‐outlet tributary upon which glacial influence was diminished between 1997 and 2007/2008. These results suggest that upward‐shifting gradients in glacial streams can involve complex interactions with other landscape elements and that local‐scale climate response can progress even more rapidly than the rate of glacial recession.  相似文献   

4.
1. The species composition of stream fish assemblages changes across the longitudinal fluvial gradient of large river basins. These changes may reflect both zonation in species distributions and environmental filtering of fish traits as stream environments change from the uplands to the lowlands of large catchments. Previous research has shown that taxonomic diversity generally increases in larger, lowland streams, and the River Continuum Concept, the River Habitat Template and other frameworks have provided expectations for what functional groups of fishes should predominate in certain stream types. However, studies addressing the functional trait composition of fish assemblages across large regions are lacking, particularly in tropical river basins. 2. We examined functional trait–environment relationships and functional diversity of stream fish assemblages in the Río Grijalva Basin in southern Mexico. Traits linked to feeding, locomotion and life history strategy were measured in fishes from streams throughout the catchment, from highland headwaters to broad, lowland streams. Relationships between functional traits and environmental variables at local and landscape scales were examined using multivariate ordination, and the convex hull volume of trait space occupied by fish assemblages was calculated as a measure of functional diversity. 3. Although there were a few exceptions, functional diversity of assemblages increased with species richness along the gradient from uplands to lowlands within the Grijalva Basin. Traits related to swimming, habitat preference and food resource use were associated with both local (e.g. substratum type, pool availability) and landscape‐scale (e.g. forest cover) environmental variables. 4. Along with taxonomic structure and diversity, the functional composition of fish assemblages changed across the longitudinal fluvial gradient of the basin. Trait–environment relationships documented in this study partially confirmed theoretical expectations and revealed patterns that may help in developing a better understanding of general functional responses of fish assemblages to environmental change.  相似文献   

5.
Biodiversity studies commonly focus on taxonomic diversity measures such as species richness and abundance. However, alternative measures based on ecomorphological traits are also critical for unveiling the processes shaping biodiversity and community assembly along environmental gradients. Our study presents the first analysis of habitat-trait-community structure in a Balkan biodiversity hotspot (Louros river, NW Greece), through the investigation of the relationships among freshwater fish assemblages’ composition, morphological traits and habitat features. In order to provide a hierarchical classification of species’ priority to protection measures, we highlight the most ecomorphologically distinct species using originality analysis. Our results suggest that the longitudinal changes of habitat variables (water temperature, depth, substrate, altitude) drive the local fish assemblages’ structure highlighting the upstream-downstream gradient. We also present evidence for environmental filtering, establishing fish assemblages according to their ecomorphological traits. The calculation of the seven available indices of ecomorphological originality indicates that Valencia letourneuxi and Cobitis hellenica, which are endemic to Louros and threatened with extinction, exhibited the highest distinctiveness; thus their protection is of great importance. The methodological approach followed and the patterns described herein can contribute further to the application of community ecology theory to conservation, highlighting the need to use ecomorphological traits as a useful ‘tool’.  相似文献   

6.
  • 1 The methods used to indicate the biological state of streams are often based on taxonomic composition, and the abundance of species or other taxa. This ‘taxonomic structure’ varies among ecoregions and cannot be applied to wider geographical areas. Therefore, we assessed the species traits of benthic macroinvertebrates from semi‐natural reference sites as a potential benchmark for large‐scale biomonitoring. Our purpose was to assess the stability of community structure, based on the representation of taxa and of traits, across large gradients of geology (sedimentary to granitic), altitude (65–1982 m), geographical coordinates (0° 48′ W to 7° 20′ E and 42° 52′ to 48° 44′ N), stream order (1–5) and slope (0.5–60‰).
  • 2 We used invertebrate abundance data from the 62 most natural French stream sites available. These abundance data served to weight the occurrence of ‘biological’ traits, such as reproductive characteristics, mobility, resistance forms, food, feeding habits, respiration, and ‘ecological’ traits, such as preferences for temperature, trophic level, saprobity, biogeographic distribution, longitudinal zonation, substratum and current velocity.
  • 3 Multivariate analyses of taxonomic composition demonstrated a clear site gradient from lowlands to uplands and from calcareous to granitic geology. In contrast, community structure based on both biological and ecological traits was stable across environmental gradients.
  • 4 The frequency distribution of biological traits indicated that the stream benthos of the ‘reference sites’ had a mixture of categories which confirmed theoretical predictions for temporally stable and spatially variable habitats. A mixture of ecological trait categories also occurred at our reference sites. Thus, semi‐natural benthic macroinvertebrate communities are functionally diverse. Moreover, we included an initial application of these traits to a case of slightly to moderately polluted sites to show that the impact of humans significantly changes this natural functional diversity.
  • 5 Future studies should focus on the potential for various biological and ecological traits to discriminate different human impacts on the benthic macroinvertebrates of running waters, and on the integration of this functional application into a general ‘reference‐condition’ approach.
  相似文献   

7.
Describing the spatial and temporal dynamics of communities is essential for understanding the impacts of global environmental change on biodiversity and ecosystem functioning. Trait‐based approaches can provide better insight than species‐based (i.e. taxonomic) approaches into community assembly and ecosystem functioning, but comparing species and trait dynamics may reveal important patterns for understanding community responses to environmental change. Here, we used a 33‐year database of fish monitoring to compare the spatio‐temporal dynamics of taxonomic and trait structure in North Sea fish communities. We found that the majority of variation in both taxonomic and trait structure was explained by a pronounced spatial gradient, with distinct communities in the southern and northern North Sea related to depth, sea surface temperature, salinity and bed shear stress. Both taxonomic and trait structure changed significantly over time; however taxonomically, communities in the south and north diverged towards different species, becoming more dissimilar over time, yet they converged towards the same traits regardless of species differences. In particular, communities shifted towards smaller, faster growing species with higher thermal preferences and pelagic water column position. Although taxonomic structure changed over time, its spatial distribution remained relatively stable, whereas in trait structure, the southern zone of the North Sea shifted northward and expanded, leading to homogenization. Our findings suggest that global environmental change, notably climate warming, will lead to convergence towards traits more adapted for novel environments regardless of species composition.  相似文献   

8.
Alpine streams are typically fed from a range of water sources including glacial meltwater, snowmelt, groundwater flow, and surface rainfall runoff. These contributions are projected to shift with climate change, particularly in the Japanese Alps where snow is expected to decrease, but rainfall events increase. The overarching aim of the study was to understand the key variables driving macroinvertebrate community composition in groundwater and snowmelt‐fed streams (n = 6) in the Kamikochi region of the northern Japanese Alps (April–December 2017). Macroinvertebrate abundance, species richness, and diversity were not significantly different between the two stream types. Community structure, however, was different between groundwater and snowmelt‐fed streams with macroinvertebrate taxa specialized for the environmental conditions present in each system. Temporal variation in the abundance, species richness, and diversity of macroinvertebrate communities was also significantly different between groundwater and snowmelt streams over the study period, with snowmelt streams exhibiting far higher levels of variation. Two snowmelt streams considered perennial proved to be intermittent with periodic drying of the streambed, but the macroinvertebrates in these systems rebounded rapidly after flows resumed with no reduction in taxonomic diversity. These same streams, nevertheless, showed a major reduction in diversity and abundance following periods of high flow, indicating floods rather than periodic drying was a major driver of community structure. This conclusion was also supported from functional analyses, which showed that the more variable snowmelt streams were characterized by taxa with resistant, rather than resilient, life‐history traits. The findings demonstrate the potential for significant turnover in species composition with changing environmental conditions in Japanese alpine stream systems, with groundwater‐fed streams potentially more resilient to future changes in comparison to snowmelt‐fed streams.  相似文献   

9.
  • 1 We used 94 sites within the Northern Lakes and Forests ecoregion spanning Minnesota, Wisconsin and Michigan to identify environmental variables at the catchment, reach and riparian scales that influence stream macroinvertebrates. Redundancy analyses (RDA) found significantly influential variables within each scale and compared their relative importance in structuring macroinvertebrate assemblages.
  • 2 Environmental variables included landcover, geology and groundwater delivery estimates at the catchment scale, water chemistry, channel morphology and stream habitat at the reach scale, and landcover influences at three distances perpendicular to the stream at the riparian scale. Macroinvertebrate responses were characterised with 22 assemblage attributes, and the relative abundance and presence/absence of 66 taxa.
  • 3 Each scale defined macroinvertebrates along an erosional to depositional gradient. Wisconsin's macroinvertebrate index of biotic integrity, Ephemeroptera–Plecoptera–Trichoptera taxa and erosional taxa corresponded with forest streams, whereas organic pollution tolerant, Chironomidae and depositional taxa corresponded with wetland streams. Reach scale analyses defined the gradient similarly as dissolved oxygen and wide, shallow channels (erosional) opposed instream macrophytes and pool habitats (depositional). Riparian forests within 30 m of the stream coincided with an erosional assemblage and biotic integrity.
  • 4 Next, we combined all significant environmental variables across scales to compare the relative influence of each spatial scale on macroinvertebrates. Partial RDA procedures described how much of the explained variance was attributable to each spatial scale and each interrelated scale combination.
  • 5 Our results appeared consistent with the concept of hierarchical functioning of scale in which large‐scale variables restrict the potential for macroinvertebrate traits or taxa at smaller spatial scales. Catchment and reach variables were equally influential in defining assemblage attributes, whereas the reach scale was more influential in determining relative abundance and presence/absence.
  • 6 Ultimately, comprehending the relative influence of catchment and reach scale properties in structuring stream biota will assist prioritising the scale at which to rehabilitate, manage and derive policies for stream ecosystem integrity.
  相似文献   

10.
确定溪流鱼类多样性的时空分布格局可为鱼类多样性保护与管理提供科学基础。尽管溪流鱼类分类群多样性的纵向梯度格局已有大量报道, 但以鱼类生物学特征为基础的功能多样性研究较少。本文基于2009-2010年4个季度对青弋江1-5级溪流共15个样点的调查数据, 利用形态特征数据和食性构建了鱼类复合功能群, 研究了不同级别溪流间鱼类分类群和功能群组成及多样性的异同, 着重探讨了鱼类分类群和功能群的α和β多样性沿溪流纵向梯度的变化规律。采集到的56种鱼类可分为4个营养功能群和5个运动功能群, 共计14个“营养-运动”复合功能群。双因素交互相似性分析结果显示, 鱼类分类群和功能群组成都随河流级别显著变化, 但季节动态不显著; 双因素方差分析后发现, 鱼类分类群和功能群α、β多样性都随河流级别显著变化, 但受季节影响不显著。经回归分析, 分类群和功能群α多样性与河流级别大小呈显著的线性正相关, 但最大分类群α多样性出现于4级河流, 最大功能群α多样性在4级和5级河流间一致; 分类群和功能群β多样性与河流级别大小呈显著的二项式关系, 呈U型分布。分类群β多样性的空间变化主要取决于物种周转, 而功能群β多样性主要由嵌套所驱动。本研究表明, 沿着“上游-下游”的纵向梯度, 河流鱼类的α和β多样性的空间变化规律不同, 分类群和功能群α多样性的空间格局基本一致, 但分类群(主要是物种周转)和功能群β多样性(主要是功能嵌套)的空间变化过程的驱动机制不同。  相似文献   

11.
Microbial biogeography is gaining increasing attention due to recent molecular methodological advance. However, the diversity patterns and their environmental determinants across taxonomic scales are still poorly studied. By sampling along an extensive elevational gradient in subarctic ponds of Finland and Norway, we examined the diversity patterns of aquatic bacteria and fungi from whole community to individual taxa across taxonomic coverage and taxonomic resolutions. We further quantified cross‐phylum congruence in multiple biodiversity metrics and evaluated the relative importance of climate, catchment and local pond variables as the hierarchical drivers of biodiversity across taxonomic scales. Bacterial community showed significantly decreasing elevational patterns in species richness and evenness, and U‐shaped patterns in local contribution to beta diversity (LCBD). Conversely, no significant species richness and evenness patterns were found for fungal community. Elevational patterns in species richness and LCBD, but not in evenness, were congruent across bacterial phyla. When narrowing down the taxonomic scope towards higher resolutions, bacterial diversity showed weaker and more complex elevational patterns. Taxonomic downscaling also indicated a notable change in the relative importance of biodiversity determinants with stronger local environmental filtering, but decreased importance of climatic variables. This suggested that niche conservatism of temperature preference was phylogenetically deeper than that of water chemistry variables. Our results provide novel perspectives for microbial biogeography and highlight the importance of taxonomic scale dependency and hierarchical drivers when modelling biodiversity and species distribution responses to future climatic scenarios.  相似文献   

12.
Streams in mediterranean regions have highly seasonal discharge patterns, with predictable torrential floods and severe droughts. In contrast, discharge is less variable in temperate regions and intermittent flow conditions are uncommon. Hydroclimatic models predict that climate change would increase frequency and severity of floods and droughts across Europe, thus increasing the proportion of streams with mediterranean characteristics in actually temperate areas. Correspondingly, understanding actual ecological differences between mediterranean and temperate streams may help to anticipate large‐scale ecological impacts of climate change. Given that large‐scale factors determine local community composition, we hypothesized that climatic differences between mediterranean and temperate regions should affect the taxonomic and biological trait composition in streams. We assembled the abundance of stream macroinvertebrate genera of 265 sites each from the Mediterranean Basin and from temperate Europe and linked these abundances to published information on 61 categories of 11 biological traits reflecting the potential of resilience from and resistance to disturbances. Although regional taxonomic richness was higher in the mediterranean than in the temperate region, local taxonomic richness and diversity did not significantly differ between regions. Local trait richness and diversity were significantly higher in the mediterranean region. Both local taxonomic and trait‐community composition differed between regions, but the former varied much more than the latter, highlighting that climate change could produce large changes in the taxonomic but rather weak changes in the trait composition. The mediterranean region was characterized by macroinvertebrates with higher dispersion and colonization capabilities, suggesting that species loss in the temperate region, by extinction or northward emigration of taxa, would be compensated for by immigration of southern mediterranean taxa. Thus, climate change would likely have stronger implications for the local conservation of taxa than for the trait composition of stream macroinvertebrate communities.  相似文献   

13.
1. Despite wide recognition that fish assemblages are influenced by factors operating over a range of spatial scales, little effort has been devoted to quantifying large‐scale variation and the multiscale dependencies of assemblage patterns and processes. This is particularly true for Mediterranean streams, where seasonally predictable drying‐up may lead to a strong association between assemblage attributes and large‐scale factors affecting the distribution of population sources and extinction likelihood. 2. The contribution of large‐scale factors to stream fish assemblage variation was quantified across a Mediterranean landscape, in south‐west Portugal. Fish abundance and species composition were estimated at 166 sites across third‐ to sixth‐order streams, in March–July 1998. Variance partitioning by redundancy analyses was used to analyse assemblage variation against three sets of predictor variables: environmental (catchment position, and geomorphic and hydrological factors), large‐scale spatial trends and neighbourhood effects. 3. Environmental variables and spatial trends accounted for 34.6% of the assemblage variation across the entire region, and for 36.6 and 57.8% within the two largest catchments (Mira and Seixe). Neighbourhood effects were analysed at the catchment scale, increasing the explained variation to 56.1% (Mira) and 70.7% (Seixe). 4. A prevailing environmental gradient was reflected in an increase in the abundance of all species and size‐classes in relation to catchment position, with more fish present in larger streams and in downstream reaches. Variables describing geomorphic and hydrological settings were less important in explaining assemblage variation. 5. Spatial trends always accounted for the smallest fraction of assemblage variation, and they were probably associated with historical barriers to fish dispersal. The strong neighbourhood effects may be related to spatially autocorrelated habitat conditions, but they are also a likely consequence of fish emigration/extinction and colonisation processes. 6. These results emphasise that a substantial proportion of fish assemblage variation in Mediterranean streams may be explained by large‐scale factors, irrespective of microhabitats and local biotic interactions. It is suggested that this pattern results to a large extent from the seasonal drying‐up, with the summer shortage of surface water limiting fish occurrence in headwaters, and consequently the key core areas for fish concentrating in larger streams and tributaries adjacent to large streams because of neighbourhood effects.  相似文献   

14.
1. Species richness and assemblage patterns of organisms are dictated by numerous factors, probably operating at multiple scales. Freshwater mussels (Unionidae) are an endangered, speciose faunal group, making them an interesting model system to study the influence of landscape features on organisms. In addition, landscape features that influence species distributions and the scale at which the factors have the greatest impact are important issues that need to be answered to conserve freshwater mussels. 2. In this study, we quantified freshwater mussel communities at 16 sites along three mid‐sized rivers in the south‐central United States. We addressed the following questions: (i) Are there predictable longitudinal changes in mussel community composition? (ii) What landscape variables best explain shifts in community composition? and (iii) At what scale do landscape variables best predict mussel community composition? 3. After controlling for the influence of longitudinal position along the stream, we compared mussel distributions to a suite of hypothesised explanatory landscape variables across multiple scales – catchment scale (entire drainage area), buffer scale (100‐m riparian buffer of the entire catchment) and reach scale (100‐m riparian buffer extending 1 km upstream from the sampling site). 4. We found a significant and consistent longitudinal shift in dominant mussel species across all three rivers, with community composition strongly related to distance from the headwaters, which is highly correlated with stream size. After accounting for stream size, variables at the buffer scale were the best predictors of mussel community composition. After accounting for catchment position, mean channel slope was the best explanatory variable of community composition and appeared in all top candidate models at the catchment and buffer scales. Coverage of wetland and urban area were also correlated with community composition at the catchment and buffer scales. 5. Our results suggest that landscape‐scale habitat factors influence mussel community composition. Landscape features at the buffer scale performed best at determining community composition after accounting for position in the catchment; thus, further protection of riparian buffers will help to conserve mussel communities.  相似文献   

15.
Riparian areas are noted for their high biodiversity, but this has rarely been tested across a wide range of taxonomic groups. We set out to describe species richness, species abundance, and community similarity patterns for 11 taxonomic groups (forbs & grasses, shrubs, trees, solpugids, spiders, scarab beetles, butterflies, lizards, birds, rodents, and mammalian carnivores) individually and for all groups combined along a riparian-upland gradient in semiarid southeastern Arizona, USA. Additionally, we assessed whether biological characteristics could explain variation in diversity along the gradient using five traits (trophic level, body size, life span, thermoregulatory mechanism, and taxonomic affiliation). At the level of individual groups diversity patterns varied along the gradient, with some having greater richness and/or abundance in riparian zones whereas others were more diverse and/or abundant in upland zones. Across all taxa combined, riparian zones contained significantly more species than the uplands. Community similarity between riparian and upland zones was low, and beta diversity was significantly greater than expected for most taxonomic groups, though biological traits explained little variance in diversity along the gradient. These results indicate heterogeneity amongst taxa in how they respond to the factors that structure ecological communities in riparian landscapes. Nevertheless, across taxonomic groups the overall pattern is one of greater species richness and abundance in riparian zones, coupled with a distinct suite of species.  相似文献   

16.
Feeding strategies are typical traits reflecting the adaptation of species to environmental conditions. This concept is currently developed in some water quality systems (e.g. Index of Trophic completeness) and the structure of functional feeding groups (FFGs) could form part of a unified measure across communities differing in taxonomic composition. However, in South America, information about the FFG classification of invertebrates in streams is almost absent and existing studies using FFG structure follows classification from North America. But even taxonomically related species may have different diets in tropical and temperate areas and therefore, studies about FFG structure in neotropics could be biased. For this reason, we determined diet composition, trophic level and FFGs, using gut contents analysis and mouthpart observations of 49 macroinvertebrate taxa (mostly at genus level) from neotropical streams. We observed that practically all macroinvertebrates fed upon fine detritus which indicates the importance of this food resource in neotropical streams. As the assignment to a single FFG does not accurately reflect the functional profile of taxa, we transcribed the affinity of taxa to each FFG using fuzzy codes. Finally, we published the coding of diet composition and FFG of the taxa examined, which could be used in future community analyses of lotic ecosystems in the Neotropical zone.  相似文献   

17.
1. Describing and understanding patterns in biological diversity along major geographical gradients is an important topic in ecology. Samples collected from a large number of physically and chemically comparable stream sites along a 4000 m gradient of altitude in the Andes of Ecuador served to characterise patterns of family richness of aquatic macroinvertebrates at the scale of the stream site (local) and at that of discrete altitudinal zones. 2. Both mean local and zonal family richness decreased by about 50% from sea level to 4000 m a.s.l. Local richness declined linearly, while zonal richness remained constant from sea level up to a threshold altitude of about 1800 m, whereafter it decreased. 3. From sea level to 1800 m few families were lost from zonal richness and few were gained. From 1800 to 3800 m the decrease in the number of families was accounted for by a loss of families present in lowland streams, with few new families gained. Hence, there was relatively little turnover of families along the entire gradient. 4. The diverging pattern of local and zonal richness was caused by sporadically occurring families inflating zonal richness at mid‐altitudes. If the sporadic families were represented by the same species found commonly in the lowlands, then the mid‐altitudinal zonal richness would be maintained by a ‘rescue effect’. More probably, however, the sporadically occurring families found at mid‐altitudes are each represented by new species replacing each other along the gradient, the families progressively diminishing in species richness and occurrence as the overall temperature tolerance of the family is approached. 5. This study demonstrates that spatial scale affects altitudinal patterns in the taxonomic richness of stream invertebrates. It also showed that family‐level identification can facilitate interpretation of sources and sinks of biodiversity along geographic gradients.  相似文献   

18.
Patterns of macroinvertebrate traits along three glacial stream continuums   总被引:1,自引:0,他引:1  
1. Glacier‐fed streams are characterised by low spatial but high temporal heterogeneity, manifested in seasonal and diurnal discharge and suspended sediment peaks induced by glacial runoff. These streams shelter macroinvertebrate communities adapted to such harsh environmental conditions. Studies relating macroinvertebrate traits to environmental conditions in glacial streams could provide important insights into the structure and function of glacial stream communities. 2. From data collected in three glacial streams from the central Swiss and southern French Alps, we analysed the relationships among six biological traits to define five groups of macroinvertebrate taxa with similar suites of traits. 3. The longitudinal distribution of the five groups and of individual traits was analysed, as well as their variation according to a glaciality index combining water temperature, conductivity, suspended solids and substrate stability. 4. The trait diversity along the three streams showed a strong upstream‐downstream gradient. The upper reaches were dominated by a single group of taxa characterised by small, crawling, deposit feeders. The other trait‐based groups appeared progressively downstream. 5. Changes in the relative frequency of trait‐based groups along the glaciality gradient highlighted the dominance of all‐rounder resistant/resilient traits in the three streams and confirmed that environmental conditions in the glacial streams are too harsh or uniform to allow macroinvertebrate communities to develop alternative suites of traits. The findings are discussed in relation to the question of trait coding in the available literature.  相似文献   

19.
Aim An intensively debated issue in macroecology is whether unicellular organisms show biogeographic patterns different from those of macroorganisms. One aspect of this debate addresses beta diversity, that is, do microbial organisms exhibit distance‐decay patterns similar to those of macroorganisms? And if so, is the decay of community similarity caused by spatially limited dispersal or by niche‐related factors? We studied the community similarity of stream diatoms, macroinvertebrates and bryophytes across the same set of sites in relation to environmental and geographic distance. Location A geographical gradient of c. 1100 km in Finland. Methods We first identified the subset of environmental variables that produced the highest correlation with community similarities for each taxonomic group. Based on these variables, we used partial Mantel tests to separate the independent influences of environmental and geographical distance for distance decay of community similarity, separately for diatoms, bryophytes and macroinvertebrates. Finally, macroinvertebrates were divided into three groups based on their different dispersal categories and a partial Mantel test was used to assess whether each of these groups were differently affected by environmental versus geographic distance, i.e. is dispersal a key factor in tests of niche versus neutral models. Results The level of environmental control was by far the strongest for diatoms; however, all groups were controlled more by environmental factors than by limited dispersal. Macroinvertebrate species with low dispersal ability were significantly related to geographic distance, while more effective dispersers showed no relationship to geography but were instead strongly related to environmental distance. Main conclusions Our results suggest that patterns between macro‐ and microorganisms are not fundamentally different, but the level of environmental control varies according to dispersal ability. The relative importance of niche versus dispersal processes is not simply a function of organism size but other traits (e.g. life‐history type, dispersal capacity) may obscure this relationship.  相似文献   

20.
Major environmental gradients co‐vary with elevation and have been a longstanding natural tool allowing ecologists to study global diversity patterns at smaller scales, and to make predictions about the consequences of climate change. These analyses have traditionally studied taxonomic diversity, but new functional diversity approaches may provide a deeper understanding of the ecological mechanisms driving species assembly. We examined lichen taxonomic and functional diversity patterns on 195 plots (200 m²) together with forest structure along an elevational gradient of 1000 m in a temperate low mountain range (Bohemian Forest, Germany). Along this elevation gradient temperature decreased and precipitation increased, two macroclimatic variables critical for lichens. Elevation was more important than forest structure in driving taxonomic and functional diversity. While species richness increased with elevation, functional diversity decreased and revealed that community patterns shift with elevation from random to clustered, reflecting selection for key shared traits. Higher elevations favored species with a complex growth form (which takes advantage of high moisture) and asexual reproductive mode (facilitating establishment under low temperature conditions). Our analysis highlights the need to examine alternative forms of diversity and opens the avenue for community predictions about climate change. For a regional scenario with increasing temperature and decreasing availability of moisture, we expect a loss of specialized species with a complex growth form and those with vegetative organs at higher elevations in low mountain ranges in Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号