首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
RNA silencing is an ancient regulatory mechanism operating in all eukaryotic cells. In fungi, it was first discovered in Neurospora crassa, although its potential as a defence mechanism against mycoviruses was first reported in Cryphonectria parasitica and, later, in several fungal species. There is little evidence of the antiviral potential of RNA silencing in the phytopathogenic species of the fungal genus Botrytis. Moreover, little is known about the RNA silencing components in these fungi, although the analysis of public genome databases identified two Dicer‐like genes in B. cinerea, as in most of the ascomycetes sequenced to date. In this work, we used deep sequencing to study the virus‐derived small RNA (vsiRNA) populations from different mycoviruses infecting field isolates of Botrytis spp. The mycoviruses under study belong to different genera and species, and have different types of genome [double‐stranded RNA (dsRNA), (+)single‐stranded RNA (ssRNA) and (–)ssRNA]. In general, vsiRNAs derived from mycoviruses are mostly of 21, 20 and 22 nucleotides in length, possess sense or antisense orientation, either in a similar ratio or with a predominance of sense polarity depending on the virus species, have predominantly U at their 5′ end, and are unevenly distributed along the viral genome, showing conspicuous hotspots of vsiRNA accumulation. These characteristics reveal striking similarities with vsiRNAs produced by plant viruses, suggesting similar pathways of viral targeting in plants and fungi. We have shown that the fungal RNA silencing machinery acts against the mycoviruses used in this work in a similar manner independent of their viral or fungal origin.  相似文献   

2.
赵轩  邓竞  马潇雨  朱旭东  张萍 《微生物学报》2022,62(5):1656-1668
RNA干扰(RNA interference,RNAi)是一种保守的真核生物基因调控机制,它利用小的非编码RNA介导转录/转录后的基因沉默。虽然部分真菌丢失了RNAi系统,但随着对真菌RNAi机制研究的增加,越来越多的证据表明,真菌的RNAi系统不但参与维持基因组完整性,其在调节真菌生长发育、介导异染色质组装、促进着丝粒进化、调节真菌耐药性与毒力等方面也具有重要作用。本文主要对真菌中RNAi的生物学功能进行综述,以期为进一步深入研究真菌RNA干扰机制提供一定的理论与研究基础。  相似文献   

3.
4.
RNA silencing in fungi: mechanisms and applications   总被引:19,自引:0,他引:19  
Nakayashiki H 《FEBS letters》2005,579(26):5950-5957
Two RNA silencing-related phenomena, quelling and meiotic silencing by unpaired DNA (MSUD) have been identified in the fungus Neurospora crassa. Similar to the case with the siRNA and miRNA pathways in Drosophila, different sets of protein components including RNA-dependent RNA polymerase, argonaute and dicer, are used in the quelling and MSUD pathways. Orthologs of the RNA silencing components are found in most, but not all, fungal genomes currently available in the public databases, indicating that the majority of fungi possess the silencing machinery. Advantage and disadvantage of RNA silencing as a tool to explore gene function in fungi are discussed.  相似文献   

5.
Recent research on microbial degradation of aromatic and other refractory compounds in anoxic waters and soils has revealed that nitrate-reducing bacteria belonging to the Betaproteobacteria contribute substantially to this process. Here we present the first complete genome of a metabolically versatile representative, strain EbN1, which metabolizes various aromatic compounds, including hydrocarbons. A circular chromosome (4.3 Mb) and two plasmids (0.21 and 0.22 Mb) encode 4603 predicted proteins. Ten anaerobic and four aerobic aromatic degradation pathways were recognized, with the encoding genes mostly forming clusters. The presence of paralogous gene clusters (e.g., for anaerobic phenylacetate oxidation), high sequence similarities to orthologs from other strains (e.g., for anaerobic phenol metabolism) and frequent mobile genetic elements (e.g., more than 200 genes for transposases) suggest high genome plasticity and extensive lateral gene transfer during metabolic evolution of strain EbN1. Metabolic versatility is also reflected by the presence of multiple respiratory complexes. A large number of regulators, including more than 30 two-component and several FNR-type regulators, indicate a finely tuned regulatory network able to respond to the fluctuating availability of organic substrates and electron acceptors in the environment. The absence of genes required for nitrogen fixation and specific interaction with plants separates strain EbN1 ecophysiologically from the closely related nitrogen-fixing plant symbionts of the Azoarcus cluster. Supplementary material on sequence and annotation are provided at the Web page .Electronic Supplementary Material Supplementary material is available for this article at Dedicated to Prof. Dr. h.c. Gerhard Gottschalk on the occasion of his 70th birthday.  相似文献   

6.
Multiple 2′-5′ oligoadenylate (2-5A) synthetases are important components of innate immunity in mammals. Gene families encoding these proteins have previously been studied mainly in humans and mice. To reconstruct the evolution of this gene family in mammals, a search for additional 2-5A synthetase genes was performed in rat, cattle, pig, and dog. Twelve 2′-5′ oligoadenylate synthetase (Oas) genes were identified in the rat genome, including eight Oas1 genes, two Oas1 pseudogenes, single copies of Oas2 and Oas3, and two Oas-like genes, Oasl1 and Oasl2. Four OAS genes were detected in the pig genome and five OAS genes were found in both the cattle and dog genomes. An OAS3 gene was not found in either the cattle or the pig genome. While two tandemly duplicated OAS-like (OASL) genes were identified in the dog genome, only a single OASL orthologue was found in both the cattle and the pig genomes. The bovine and porcine OASL genes contain premature stop codons and encode truncated proteins, which lack the typical C-terminal double ubiquitin domains. The cDNA sequences of the rat, cattle, pig, and dog OAS genes were amplified, sequenced and compared with each other and with those in the human, mouse, horse, and chicken genomes. Evidence of concerted evolution of paralogous 2′-5′ oligoadenylate synthetase 1 genes was obtained in rodents (Rodentia) and even-toed ungulates (Artiodactyla). Calculations using the nonparametric Kolmogorov-Smirnov test suggested that the homogenization of paralogous OAS1 sequences was due to gene conversion rather than stabilizing selection. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. Reviewing Editor: Dr. Martin Kreitman  相似文献   

7.
Since their discovery in Metazoa, the three nuclear RNA polymerases (RNAPs) have been found in fungi, plants, and diverse protists. In all eukaryotes studied to date, RNAPs I, II, and III collectively transcribe all major RNAs made in the nucleus. We have found genes for the largest subunit (RPD1/RPE1) of a new DNA-dependent RNAP, RNAP IV, in all major land plant taxa and in closely related green algae. Genes for the second-largest subunit (RPD2) of this enzyme were found in all land plants. Phylogenetic study indicates that RNAP IV genes are sister to the corresponding RNAP II genes. Our results show the genesis of RNAP IV to be a multistep process in which the largest and second-largest subunit genes evolved by independent duplication events in the ancestors of Charales and land plants. These findings provide insights into evolutionary mechanisms that can explain the origin of multiple RNAPs in the eukaryotic nucleus. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Patrick Keeling]  相似文献   

8.
RNA silencing plays crucial roles in both bacteria and eukaryotes, yet its machinery appears to differ in these two kingdoms. A couple of Argonaute protein homologs have been reported in some archaeal species in recent years. As Argonaute protein is the key component of eukaryotic RNA silencing pathways, such findings suggested the possibility of existence of eukaryotic RNA silencing like pathways in Archaea, which present the life forms between prokaryotes and eukaryotes. To further explore such hypothesis, we systematically screened 71 fully sequenced archaeal genomes, and identified some proteins containing homologous regions to the functional domains of eukaryotie RNA silencing pathway key proteins. The phylogenetic relationships of these proteins were analyzed. The conserved time-tional amino acids between archaeal and eukaryotic Piwi domains suggested their functional similarity. Our results provide new clues to the evolution of RNA silencing pathways.  相似文献   

9.
Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Rüdiger Cerff]  相似文献   

10.
《Fungal Biology Reviews》2013,26(4):172-180
Although extensively cataloged and functionally diverse in plants and animals, the role and targets of small RNAs remain mostly uncharacterized in filamentous fungi. To date, much of the knowledge of small RNAs in filamentous fungi has been derived from studies of a limited group of fungi, most notably in Neurospora crassa. While most of the recently discovered classes of small RNAs appear to be unique to fungi some are commonly found in eukaryotes. It is noteworthy that the RNA silencing protein machinery involved in small RNA biogenesis has also diverged greatly, particularly within filamentous fungi, and may explain the diversity of small RNA classes. In this review, we summarize important classes of eukaryotic small RNAs and provide a current analysis of the RNA silencing machinery based on available fungal genome sequences. Finally, we discuss opportunities for exploiting knowledge of small RNAs and RNA silencing for practical application such as engineering plants resistant to fungal pathogens.  相似文献   

11.
Ustilago maydis is a model fungal pathogen that induces the formation of tumors in maize. The tumor provides an environment for hyphal differentiation, leading to the formation of thick-walled, diploid teliospores. Such spores serve as a dispersal agent for smut and rust fungi, and their germination leads to new rounds of infection. The morphological changes that occur during teliospore germination in U. maydis have been described in detail. However, the specific molecular events that facilitate this process have not been identified. Through the construction and hybridization of microarrays containing a set of 3918 non-redundant cDNAs, we have identified genes that are differentially regulated during teliospore germination. Teliospores induced to germinate for 4 and 11 h were selected for comparison with dormant teliospores. Genes identified as differentially expressed included many that are presumably involved in as yet undescribed molecular events during teliospore germination, as well as characterized genes previously shown to be required for the process. This study represents the first large-scale investigation of changes in gene expression during teliospore germination.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

12.
Although extensively cataloged and functionally diverse in plants and animals, the role and targets of small RNAs remain mostly uncharacterized in filamentous fungi. To date, much of the knowledge of small RNAs in filamentous fungi has been derived from studies of a limited group of fungi, most notably in Neurospora crassa. While most of the recently discovered classes of small RNAs appear to be unique to fungi some are commonly found in eukaryotes. It is noteworthy that the RNA silencing protein machinery involved in small RNA biogenesis has also diverged greatly, particularly within filamentous fungi, and may explain the diversity of small RNA classes. In this review, we summarize important classes of eukaryotic small RNAs and provide a current analysis of the RNA silencing machinery based on available fungal genome sequences. Finally, we discuss opportunities for exploiting knowledge of small RNAs and RNA silencing for practical application such as engineering plants resistant to fungal pathogens.  相似文献   

13.
Role of Double-Stranded RNA in Eukaryotic Gene Silencing   总被引:7,自引:0,他引:7  
Aravin  A. A.  Klenov  M. S.  Vagin  V. V.  Rozovskii  Ya. M.  Gvozdev  V. A. 《Molecular Biology》2002,36(2):180-188
  相似文献   

14.
We report structural features and distribution patterns of 26 different group I introns located at three distinct nucleotide positions in nuclear small subunit ribosomal DNA (SSU-rDNA) of 10 Septoria and 4 other anamorphic species related to the teleomorphic genus Mycosphaerella. Secondary structure and sequence characteristics assigned the introns to the common IC1 and IE groups. Intron distribution patterns and phylogenetic relationships strongly suggested that some horizontal transfer events have occurred among the closely related fungal species sampled. To test this hypothesis, we used a comparative approach of intron- and rDNA-based phylogenies through MP- and ML-based topology tests. Our results showed two statistically well-supported major incongruences between the intron and the equivalent internal transcribed spacer (ITS) tree comparisons made. Such absence of a co-evolutive history between group I introns and host sequences is discussed relatively to the intron structures, the mechanisms of intron movement, and the biology of the Mycosphaerella pathogenic fungi. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Reviewing Editor: Debashish Bhattacharya  相似文献   

15.
  • ATP‐binding cassette sub‐family E member 1 (ABCE1) is recognized as a strongly conserved ribosome recycling factor, indispensable for translation in archaea and eukaryotes, however, its role in plants remains largely unidentified. Arabidopsis thaliana encodes two paralogous ABCE proteins (AtABCE1 and AtABCE2), sharing 81% identity. We previously reported that AtABCE2 functions as a suppressor of RNA silencing and that its gene is ubiquitously expressed. Here we describe the structural requirements of AtABCE2 for its suppressor function.
  • Using agroinfiltration assays, we transiently overexpressed mutated versions of AtABCE2 together with GFP, to induce silencing in GFP transgenic Nicotiana benthamiana leaves. The influence of mutations was analysed at both local and systemic levels by in vivo imaging of GFP, Northern blot analysis of GFP siRNAs and observation of plants under UV light.
  • Mutants of AtABCE2 with impaired ATP binding in either active site I or II failed to suppress GFP RNA silencing. Mutations disrupting ATP hydrolysis influenced the suppression of silencing differently at active site I or II. We also found that the N‐terminal iron–sulphur cluster domain of AtABCE2 is crucial for its suppressor function.
  • Meaningfully, the observed structural requirements of AtABCE2 for RNA silencing suppression were found to be similar to those of archaeal ABCE1 needed for ribosome recycling. AtABCE2 might therefore suppress RNA silencing via supporting the competing RNA degradation mechanisms associated with ribosome recycling.
  相似文献   

16.
RNA silencing plays an important role in plants in defence against viruses. To overcome this defence, plant viruses encode suppressors of RNA silencing. The most common mode of silencing suppression is sequestration of double‐stranded RNAs involved in the antiviral silencing pathways. Viral suppressors can also overcome silencing responses through protein–protein interaction. The poleroviral P0 silencing suppressor protein targets ARGONAUTE (AGO) proteins for degradation. AGO proteins are the core component of the RNA‐induced silencing complex (RISC). We found that P0 does not interfere with the slicer activity of pre‐programmed siRNA/miRNA containing AGO1, but prevents de novo formation of siRNA/miRNA containing AGO1. We show that the AGO1 protein is part of a high‐molecular‐weight complex, suggesting the existence of a multi‐protein RISC in plants. We propose that P0 prevents RISC assembly by interacting with one of its protein components, thus inhibiting formation of siRNA/miRNA–RISC, and ultimately leading to AGO1 degradation. Our findings also suggest that siRNAs enhance the stability of co‐expressed AGO1 in both the presence and absence of P0.  相似文献   

17.
Ustilago hordei is a biotrophic parasite of barley (Hordeum vulgare). After seedling infection, the fungus persists in the plant until head emergence when fungal spores develop and are released from sori formed at kernel positions. The 26.1-Mb U. hordei genome contains 7113 protein encoding genes with high synteny to the smaller genomes of the related, maize-infecting smut fungi Ustilago maydis and Sporisorium reilianum but has a larger repeat content that affected genome evolution at important loci, including mating-type and effector loci. The U. hordei genome encodes components involved in RNA interference and heterochromatin formation, normally involved in genome defense, that are lacking in the U. maydis genome due to clean excision events. These excision events were possibly a result of former presence of repetitive DNA and of an efficient homologous recombination system in U. maydis. We found evidence of repeat-induced point mutations in the genome of U. hordei, indicating that smut fungi use different strategies to counteract the deleterious effects of repetitive DNA. The complement of U. hordei effector genes is comparable to the other two smuts but reveals differences in family expansion and clustering. The availability of the genome sequence will facilitate the identification of genes responsible for virulence and evolution of smut fungi on their respective hosts.  相似文献   

18.
RNA viruses have very compact genomes and so provide a unique opportunity to study how evolution works to optimize the use of very limited genomic information. A widespread viral strategy to solve this issue concerning the coding space relies on the expression of proteins with multiple functions. Members of the family Potyviridae, the most abundant group of RNA viruses in plants, offer several attractive examples of viral factors which play roles in diverse infection‐related pathways. The Helper Component Proteinase (HCPro) is an essential and well‐characterized multitasking protein for which at least three independent functions have been described: (i) viral plant‐to‐plant transmission; (ii) polyprotein maturation; and (iii) RNA silencing suppression. Moreover, multitudes of host factors have been found to interact with HCPro. Intriguingly, most of these partners have not been ascribed to any of the HCPro roles during the infectious cycle, supporting the idea that this protein might play even more roles than those already established. In this comprehensive review, we attempt to summarize our current knowledge about HCPro and its already attributed and putative novel roles, and to discuss the similarities and differences regarding this factor in members of this important viral family.  相似文献   

19.
低毒病毒及板栗疫病菌低毒力机制   总被引:1,自引:0,他引:1  
低毒病毒是一类存在于板栗疫病菌细胞质中自主复制的无衣壳正链RNA病毒.感染低毒病毒后,板栗疫病菌的致病力显著降低,色素分泌减少,菌丝体由感染病毒前的桔黄色变为白色,产孢量降低或不产孢,漆酶表达水平明显下降.低毒病毒侵染性克隆的获得以及高效转化和转染体系的建立,使得低毒病毒成为目前唯一可以进行全面遗传操作的真菌病毒.利用低毒病毒作为探针来探测板栗疫病菌的致病力组成和毒力调节机制,已获得了一些很有意义的发现.本文介绍近几年低毒病毒及其与真菌相互作用的研究进展,包括低毒病毒的基因组和功能基因研究、低毒病毒和线粒体损害引起的板栗疫病菌低毒力机制、板栗疫病菌的RNA沉默系统以及低毒病毒抗RNA沉默的机制.低毒病毒/板栗疫病菌系统已经成为研究病毒与宿主相互作用以及病原真菌致病机理的很好的模式系统.  相似文献   

20.
In this study, I searched for fungal-specific proteins in the genome of the budding yeast Saccharomyces cerevisiae, inferred from a comparison of amino acid sequences. I used the GTOP (Genomes to Protein structures and functions) database of the DDBJ (DNA Data Bank of Japan), which consists of 21 genomes from Archaea, 203 genomes from Bacteria, and 50 genomes from Eucarya (including 18 fungal genomes). Among 5,874 proteins of S. cerevisiae, 1,551 have homologs only in Eucarya, and 504 of the 1,551 have homologs only in fungi. To find fungal-specific proteins, homologs of the homologs have been searched repeatedly. As a result, 132 of the 504 are characterized as fungal-specific proteins. The genes encoding the 132 fungal-specific proteins are not included in the list of essential genes for viability in the S. cerevisiae genome deletion project. Among the 132 proteins, 99 are S. cerevisiae-specific, and no protein that is distributed among 10 or more of the 18 fungal species exists. In addition, most of the fungal-specific proteins are very small and functionally unknown. My results show that the fungal-specific proteins have short evolutionary histories, suggesting that S. cerevisiae produces novel proteins and that ancestral fungi also produced small proteins most of which have disappeared or have been combined with other proteins during fungal evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号