首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Side-population (SP) cells have been shown to be highly enriched stem cells. We investigated whether an immortalized, nontumorigenic human liver cell line, THLE-5b, contains SP cells. Flow cytometry analysis after Hoechst 33342 staining demonstrated that the THLE-5b line contained a small component of SP cells. These SP cells were essentially eliminated by treatment with verapamil and expressed higher levels of ABCG2 mRNA than non-SP cells. In addition, the level of these SP cells detected by Hoechst 33342 staining was affected by the experimental conditions including the incubation medium. This is the first report of the presence of SP cells in the immortalized, nontumorigenic human liver cell line.  相似文献   

2.
3.
4.

Background

The endothelium lines blood and lymph vessels and protects underlying tissues against external agents such as viruses, bacteria and parasites. Yet, microbes and particularly viruses have developed sophisticated ways to bypass the endothelium in order to gain access to inner organs. De novo infection of the liver parenchyma by many viruses and notably hepatitis viruses, is thought to occur through recruitment of virions on the sinusoidal endothelial surface and subsequent transfer to the epithelium. Furthermore, the liver endothelium undergoes profound changes with age and in inflammation or infection. However, primary human liver sinusoidal endothelial cells (LSECs) are difficult to obtain due to scarcity of liver resections. Relevant derived cell lines are needed in order to analyze in a standardized fashion the transfer of pathogens across the liver endothelium. By lentiviral transduction with hTERT only, we have immortalized human LSECs isolated from a hereditary hemorrhagic telangiectasia (HHT) patient and established the non-transformed cell line TRP3. TRP3 express mesenchymal, endothelial and liver sinusoidal markers. Functional assessment of TRP3 cells demonstrated a high capacity of endocytosis, tube formation and reactivity to immune stimulation. However, TRP3 displayed few fenestrae and expressed C-type lectins intracellularly. All these findings were confirmed in the original primary LSECs from which TRP3 were derived suggesting that these features were already present in the liver donor. We consider TRP3 as a model to investigate the functionality of the liver endothelium in hepatic inflammation in infection.  相似文献   

5.
From unfractionated embryonic mice liver cells, appreciable amount of spherical bodies containing nestin-positive cells were generated in the presence of neuronal growth factors. Following cultivation on poly-d-lysine/laminin-coated slips, approximately 70% of the cells expressed neuronal markers, and 16% had long processes. Functional analysis of these long-process-bearing cells with the whole-cell patch clamp method showed an inward current in response to glutamate, GABA, and serotonin as the neuronal characteristics. Furthermore, regenerating liver in adult mice also contained nestin-positive cells to the same extent as fetal liver. Regenerating liver could have potential as a source of neural cells for autologous transplantation.  相似文献   

6.
Progenitor cells may contribute to cardiac regeneration. Here, we investigated the role of cadherins and integrins for differentiation of human adult circulating endothelial progenitor cells (EPCs) into cardiomyocytes (CM) in a co-culture system. N- and E-cadherin were expressed in EPCs and were localized at the interface between EPCs and CM. Incubation of a blocking antibody against E-cadherin reduced the expression of CM marker protein in EPCs. Blocking antibodies against N- or P-cadherin or the beta1- and beta2-integrins were not effective. These data suggested that cell-to-cell communication mediated by E-cadherin contributes to the acquirement of a cardiomyogenic phenotype of human endothelial progenitor cells.  相似文献   

7.
8.
We have previously obtained monoclonal bone marrow stem cells from adult rats (rMSCs) and induced them into phenotypic neurons. In the present study, we aimed to induce rMSCs into epithelial cells by culturing them onto compartmentalized permeable supports, which have been used for growing a variety of polarized epithelia in culture. Hematoxylin staining showed that after 4 days grown on permeable supports, rMSCs formed an epithelial-like monolayer. Immunofluorescence of the permeably-supported monolayers, but not the rMSCs grown in culture flasks, showed positive signals for epithelial markers, cytokeratin 5 & 8. RT-PCR results also showed the mRNA expression of epithelial sodium channel (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR) as well as tight junction protein ZO-1 in the rMSC-derived monolayers grown on permeable supports but absent from those grown in culture flasks. However, western blot only detected protein expression of ZO-1 but not ENaC nor CFTR. The short-circuit current measurements showed that the rMSC-derived monolayers grown on permeable supports exhibited a trans-monolayer resistance of 30-50 Omega cm(2); however, the monolayers did not respond to activators or blockers of CFTR or ENaC. The results suggest that compartmentalized or polarized culture conditions provide a suitable environment for rMSCs to differentiate into epithelial progenitor cells with tight junction formation; however, this condition is not sufficient for functional expression of epithelial ion channels associated with well-differentiated epithelia.  相似文献   

9.
The study of the differentiation potential of multipotent stromal progenitor cells (PC) in embryogenesis is a crucial issue for understanding their biology and role in the tissue regeneration of an adult organism. In this study, in monolayer culture, osteogenic and adipogenic potencies of fibroblast-like PCs derived from human fetal liver of 8–11 gestation weeks were investigated before and after exposure to cryoprotectant dimethyl sulphoxide (DMSO). It was shown that the primary suspension of human fetal liver cells includes immature stromal fibroblast-like PCs, which were able to induce osteogenic and adipogenic differentiation. The short-term exposure of recently isolated human fetal liver cells to cryoprotectant DMSO led to alterations in the properties of fibroblast-like PCs. Under subculture conditions, an increase in the number of fibroblast-like PCs capable of inducing osteogenic differentiation in vitro was discovered. It is necessary to take this established fact of DMSO influence on the differentiation capacity of fetal fibroblast-like PCs into consideration when developing cryopreservation methods for stem cells.  相似文献   

10.
Hepatic progenitor cells in human liver diseases   总被引:19,自引:0,他引:19  
The canals of Hering and bile ductules in human liver contain hepatic progenitor cells that can differentiate towards the biliary and hepatocytic lineage. Proliferation and differentiation of hepatic progenitor cells is referred to as 'activation' and this process occurs to a variable degree in almost all human liver diseases. Several studies indicate that hepatic progenitor cell activation in diseased liver is regulated by neural and neuroendocrine factors such as the vagal innervation. Analogous to oval cells in animal liver, there is evidence that human hepatic progenitor cells may be able to give rise to hepatocellular carcinoma and other liver tumors.  相似文献   

11.
Endothelial progenitor cells (EPCs) have been implicated in the pathogenesis and treatment of cardiovascular disease. By use of quantitative uptake of DiLDL and lectin staining, EPCs have been characterized reliably. However, the exact nature and function of this cell population still remains poorly defined. In an attempt to further clarify the cell surface characteristics of EPCs, mononuclear cells (MNCs) were isolated from human blood and cell surface expression patterns were defined by FACS analysis before and after differentiation for 1-10 days in cell culture. "Classical" double staining for DiLDL and Ulex europaeus increases to 89.2 /- 0.05 after 10 days in culture. Looking at EPC-specific markers by FACS analysis, 0.18 +/- 0.11% of freshly isolated MNCs express CD34, 0.13 +/- 0.08% CD133, 0.59 +/-0.51% VEGFr2, 0.01 +/- 0.02% CD34/VEGFr2, 0.09 +/- 0.05% CD34/CD133, 0.58 +/- 0.13% CD34/CD31, and 0.02 +/- 0.01% CD34/CD146, respectively. Induction of the endothelial phenotype is evidenced by positive staining for VEGFr2, CD146, and CD31, and occurs in co-expression with stem cell markers in less than 2 +/- 0.52% of cultured cells. Expression of CD34 increases to 0.38 +/- 0.10% after 10 days, whereas the CD133(+) cell population shows an initial peak at 24h (0.29 +/- 0.18%) before decreasing to 0.15 +/- 0.02% at day 10. EPCs co-expressing CD34/CD133 increase to 0.19 +/- 0.09% after 10 days, and EPCs double-positive for CD34/VEGFr2 increase to 1.45 +/- 1.03%. Looking at leukocyte, lymphocyte, and monocyte lineage markers, 56.27 +/- 0.15% of freshly isolated MNCs express CD45, 7.13 +/- 0.02% CD14, and 38.65 +/- 0.01% CD3. Over the 10-day culture period, expression of CD45 decreases to 28.48 +/- 0.18%, CD3 to 23.11 +/- 0.02%, and CD14 to 0.09 +/- 0.02%. Cells co-expressing CD3/CD45 decrease from 38.88 +/- 0.33% to 24.86 +/- 2.49% after 10 days in culture. These findings extend present knowledge by showing that human MNCs differentiate at a very low rate to EPCs, while a majority of the cultured cell population remain committed to the leukocyte or lymphocyte lineage. Careful surface marker analysis might be necessary when using in vitro EPC differentiation systems.  相似文献   

12.
Neurogenesis in the adult human brain occurs within two principle neurogenic regions, the hippocampus and the subventricular zone (SVZ) of the lateral ventricles. Recent reports demonstrated the isolation of human neuroprogenitor cells (NPCs) from these regions, but due to limited tissue availability the knowledge of their phenotype and differentiation behavior is restricted. Here we characterize the phenotype and differentiation capacity of human adult hippocampal NPCs (hNPCs), derived from patients who underwent epilepsy surgery, on various feeder cells including fetal mixed cortical cultures, mouse embryonic fibroblasts (MEFs) and PA6 stromal cells. Isolated hNPCs were cultured in clonal density by transferring the cells to serum-free media supplemented with FGF-2 and EGF in 3% atmospheric oxygen. These hNPCs showed neurosphere formation, expressed high levels of early neuroectodermal markers, such as the proneural genes NeuroD1 and Olig2, the NSC markers Nestin and Musashi1, the proliferation marker Ki67 and significant activity of telomerase. The phenotype was CD15low/-, CD34-, CD45- and CD133-. After removal of mitogens and plating them on poly D-lysine, they spontaneously differentiated into a neuronal (MAP2ab+), astroglial (GFAP+), and oligodendroglial (GalC+) phenotype. Differentiated hNPCs showed functional properties of neurons, such as sodium channels, action potentials and production of the neurotransmitters glutamate and GABA. Co-culture of hNPCs with fetal cortical cultures, MEFs and PA6 cells increased neurogenesis of hNPCs in vitro, while only MEFs and PA6 cells also led to a morphological and functional neurogenic maturation. Together we provide a first detailed characterization of the phenotype and differentiation potential of human adult hNPCs in vitro. Our findings reinforce the emerging view that the differentiation capacity of adult hNPCs is critically influenced by non-neuronal mesodermal feeder cells.  相似文献   

13.

Background

As the multipotent progenitor population of the airway epithelium, human airway basal cells (BC) replenish the specialized differentiated cell populations of the mucociliated airway epithelium during physiological turnover and repair. Cultured primary BC divide a limited number of times before entering a state of replicative senescence, preventing the establishment of long-term replicating cultures of airway BC that maintain their original phenotype.

Methods

To generate an immortalized human airway BC cell line, primary human airway BC obtained by brushing the airway epithelium of healthy nonsmokers were infected with a retrovirus expressing human telomerase (hTERT). The resulting immortalized cell line was then characterized under non-differentiating and differentiating air-liquid interface (ALI) culture conditions using ELISA, TaqMan quantitative PCR, Western analysis, and immunofluorescent and immunohistochemical staining analysis for cell type specific markers. In addition, the ability of the cell line to respond to environmental stimuli under differentiating ALI culture was assessed.

Results

We successfully generated an immortalized human airway BC cell line termed BCi-NS1 via expression of hTERT. A single cell derived clone from the parental BCi-NS1 cells, BCi-NS1.1, retains characteristics of the original primary cells for over 40 passages and demonstrates a multipotent differentiation capacity into secretory (MUC5AC, MUC5B), goblet (TFF3), Clara (CC10) and ciliated (DNAI1, FOXJ1) cells on ALI culture. The cells can respond to external stimuli such as IL-13, resulting in alteration of the normal differentiation process.

Conclusion

Development of immortalized human airway BC that retain multipotent differentiation capacity over long-term culture should be useful in understanding the biology of BC, the response of BC to environmental stress, and as a target for assessment of pharmacologic agents.  相似文献   

14.
A therapeutic approach being investigated for a variety of pathologies is tissue regeneration using a patient's own cells. Such studies have been hampered due to the difficulty in growing epithelial cells for prolonged periods in culture. Replicative senescence due to short telomeres and p16 induced by culture stress work together to inhibit cell growth. Forced expression of telomerase (hTERT) can prevent replicative senescence, and expression of the cell cycle protein cdk4 can sequester p16, thereby immortalizing epithelial cells in culture. In the present study, we used this method to immortalize human bronchial epithelial cells (HBECs) to determine whether immortalized HBECs retain the ability to differentiate normally. HBECs were plated atop contracted collagen gels containing lung fibroblasts. This three-dimensional (3D) tissue model was cultured initially submerged, then raised to the air/liquid interface for up to 28 days. Normal differentiation was assessed by the presence of ciliated cells, goblet (mucin-producing) cells, and basal epithelial cells. Scanning electron microscopic observations revealed both ciliated and non-ciliated cells in these 3D tissues. Histological examination revealed the presence of mucin-producing cells, and immunohistochemistry using antibodies against p63 and keratin 14 showed the presence of basal cells. These results demonstrate that immortalized HBECs retain the capacity to differentiate into each of three cell types: basal, mucin-producing, and columnar ciliated epithelial cells. Such cells will be useful cellular reagents for research in aging, cancer progression, as well as normal bronchial epithelial differentiation and will help progress the use of engineered cells to enhance tissue regeneration.  相似文献   

15.
近年来,内皮细胞的应用价值不断提高,应用领域不断拓宽,但其来源有限,成为研究应用的主要障碍.胚胎干细胞在体外可分化为多种组织细胞系,有可能成为获取内皮细胞的另一来源.就人胚胎干细胞向内皮祖细胞分化、分离方法、相关分子机制及内皮祖细胞应用价值等进行阐述,以期能够引起更多的关注,推动其研究的进展.  相似文献   

16.
17.
Zhang L  Sun L  Zhao Y 《Cell research》2007,17(1):50-55
The thymus provides the essential microenvironment for T-cell development and maturation. Thymic epithelial cells (TECs), which are composed of thymic cortical epithelial cells (cTECs) and thymic medullary epithelial cells (mTECs), have been well documented to be critical for these tightly regulated processes. It has long been controversial whether the common progenitor cells of TECs could give rise to both cTECs and mTECs. Great progress has been made to characterize the common TEC progenitor cells in recent years. We herein discuss the sole origin paradigm with regard to TEC differentiation as well as these progenitor cells in thymus regeneration.  相似文献   

18.
A monoclonal antibody (mAb 5G) was produced against a tumorigenic rat esophageal epithelial cell line, designated B2T. Using an enzyme-linked immunosorbent assay, immunofluorescence assay (IFA), thin-layer chromatography (TLC) and immunoperoxidase staining, it was found that mAb 5G reacted specifically with a glycolipid antigen expressed by three tumorigenic rat esophageal epithelial cell lines, and two out of the three nontumorigenic, immortalized rat esophageal epithelial cell lines tested; but did not react with primary cultures of normal rat esophageal epithelial cells or fibroblasts. mAb 5G did not bind to rat respiratory tract carcinoma cell lines, to immortalized rat tracheal epithelial cell lines, or to primary cultures of normal rat tracheal epithelial cells. In addition, mAb 5G did not react with any of the human or mouse cell lines tested. In IFA experiments, mAb 5G stained imprints prepared from in vivo propagated B2T tumor tissues, but did not react with normal rat esophageal, tracheal, lung, liver, and kidney tissues. The antigen was identified by TLC as a neutral glycolipid, consisting of two bands, withR F = 0.45 and 0.41, which migrated in proximity to the ceramide trihexoside standard on TLC plates. Densitometric scanning of the antigen bands indicated that the tumorigenic rat esophageal cell lines possessed 50%–90% more mAb-5G-reactive antigen than the nontumorigenic esophageal cell lines. The results show that mAb 5G reacts specifically with a glycolipid antigen expressed by tumorigenic and certain non-tumorigenic, immortalized rat esophageal epithelial cell lines that might be at the late stages of transformation and early malignancy.  相似文献   

19.
Umbilical cord blood (UCB) is a valuable source for hematopoietic progenitor cell therapy. Moreover, it contains another subset of non-hematopoietic population referred to as mesenchymal progenitor cells (MPCs), which can be ex vivo expanded and differentiated into osteoblasts, chondrocytes and adipocytes. In this study, we successfully isolated the clonogenic MPCs from UCB by limiting dilution method. These cells exhibited two different morphologic phenotypes, including flattened fibroblasts (majority) and spindle-shaped fibroblasts (minority). Both types of MPCs shared similar cell surface markers except CD90 and had similar osteogenic and chondrogenic potentials. However, the spindle-shaped clones possessed the positive CD90 expression and showed a greater tendency in adipogenesis, while the flattened clones were CD90 negative cells and showed a lower tendency in adipogenesis. The high number of flattened MPCs might be linked to the less sensitivity of UCB-derived MPCs in adipogenic differentiation.  相似文献   

20.
Mesenchymal stem cell (MSC) therapy is a promising approach to promote tissue regeneration by either differentiating the MSCs into the desired cell type or by using their trophic functions to promote endogenous tissue repair. These strategies of regenerative medicine are limited by the availability of MSCs at the point of clinical care. Our laboratory has recently identified multipotent mesenchymal progenitor cells (MPCs) in traumatically injured muscle tissue, and the objective of this study was to compare these cells to a typical population of bone marrow derived MSCs. Our hypothesis was that the MPCs exhibit multilineage differentiation and expression of trophic properties that make functionally them equivalent to bone marrow derived MSCs for tissue regeneration therapies. Quantitative evaluation of their proliferation, metabolic activity, expression of characteristic cell-surface markers and baseline gene expression profile demonstrate substantial similarity between the two cell types. The MPCs were capable of differentiation into osteoblasts, adipocytes and chondrocytes, but they appeared to demonstrate limited lineage commitment compared to the bone marrow derived MSCs. The MPCs also exhibited trophic (i.e. immunoregulatory and pro-angiogenic) properties that were comparable to those of MSCs. These results suggest that the traumatized muscle derived MPCs may not be a direct substitute for bone marrow derived MSCs. However, because of their availability and abundance, particularly following orthopaedic injuries when traumatized muscle is available to harvest autologous cells, MPCs are a promising cell source for regenerative medicine therapies designed to take advantage of their trophic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号