首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A common group of muscular dystrophies is associated with the aberrant glycosylation of α-dystroglycan. These clinically heterogeneous disorders, collectively termed dystroglycanopathies, are often associated with central nervous system and more rarely eye pathology. Defects in a total of eight putative and demonstrated glycosyltransferases or accessory proteins of glycosyltransferases have been shown to cause a dystroglycanopathy phenotype. In recent years the systematic analysis of large patient cohorts has uncovered a complex relationship between the underlying genetic defect and the resulting clinical phenotype. These studies have also drawn attention to the high proportion of patients that remain without a genetic diagnosis implicating novel genes in the pathogenesis of dystroglycanopathies. Recent glycomic analyses of α-dystroglycan have reported complex patterns of glycan composition and have uncovered novel glycan modifications. The exact glycan synthesis and modification pathways involved, as well as their role in ligand binding, remain only partially characterised. This review will focus on recent studies that have extended our knowledge of the mechanisms underlying dystroglycanopathies and have further characterised this patient population.  相似文献   

4.
Recent work shows that Wnt signaling directly regulates the apical constriction that drives gastrulation movements in Caenorhabditis elegans, and also promotes invagination in sea urchins, providing a novel and possibly conserved mode of developmental regulation.  相似文献   

5.
Gastrulation in C. elegans embryos involves ingression of individual cells, but is driven by apical constriction of the kind that promotes migration of epithelial cell sheets. Recent work shows that PAR proteins, known for their role in polarization and unequal cell division, are also associated with the polarization that establishes this apical constriction.  相似文献   

6.
7.
Melanosomes on the move: a model to understand organelle dynamics   总被引:1,自引:0,他引:1  
Advances in live-cell microscopy have revealed the extraordinarily dynamic nature of intracellular organelles. Moreover, movement appears to be critical in establishing and maintaining intracellular organization and organellar and cellular function. Motility is regulated by the activity of organelle-associated motor proteins, kinesins, dyneins and myosins, which move cargo along polar MT (microtubule) and actin tracks. However, in most instances, the motors that move specific organelles remain mysterious. Over recent years, pigment granules, or melanosomes, within pigment cells have provided an excellent model for understanding the molecular mechanisms by which motor proteins associate with and move intracellular organelles. In the present paper, we discuss recent discoveries that shed light on the mechanisms of melanosome transport and highlight future prospects for the use of pigment cells in unravelling general molecular mechanisms of intracellular transport.  相似文献   

8.
9.
Gene products provided by the mother to the embryo determine the body axes in most animals. A recent study in zebrafish proposes that the TGFss signal Squint is one such factor.  相似文献   

10.
11.
Semaphorins are secreted or transmembrane proteins that regulate cell motility and attachment in axon guidance, vascular growth, immune cell regulation and tumour progression. The main receptors for semaphorins are plexins, which have established roles in regulating Rho-family GTPases. Recent work shows that plexins can also influence R-Ras, which, in turn, can regulate integrins. Such regulation is probably a common feature of semaphorin signalling and contributes substantially to our understanding of semaphorin biology.  相似文献   

12.
Link D 《Nature medicine》2010,16(10):1073-1074
  相似文献   

13.
14.
15.
16.
17.
18.
Two new crystal structures published in Cell and Molecular Cell provide the first clues about how fascinating proteins called formins interact with actin filaments.  相似文献   

19.
Cell migration is an essential process that controls many physiological functions ranging from development to immunity. In vivo, cells are guided by a combination of physical and chemical cues. Chemokines have been the center of attention for years, but the role of physical properties of tissues has been under-investigated, despite the fact that these properties can be drastically modified in pathology. Here, we discuss the role of one important tissue physical property, hydraulic resistance, in cell guidance, a phenomenon referred to as barotaxis, and describe the underlying physical principles and molecular mechanisms. Finally, we speculate on the putative role of barotaxis in physiological processes involving immune and cancer cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号