首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Well-constrained carbon:nitrogen:phosphorus (C:N:P) ratios in planktonic biomass, and their importance in advancing our understanding of biological processes and nutrient cycling in marine ecosystems, has motivated ecologists to search for similar patterns in terrestrial ecosystems. Recent analyses indicate the existence of “Redfield-like” ratios in plants, and such data may provide insight into the nature of nutrient limitation in terrestrial ecosystems. We searched for analogous patterns in the soil and the soil microbial biomass by conducting a review of the literature. Although soil is characterized by high biological diversity, structural complexity and spatial heterogeneity, we found remarkably consistent C:N:P ratios in both total soil pools and the soil microbial biomass. Our analysis indicates that, similar to marine phytoplankton, element concentrations of individual phylogenetic groups within the soil microbial community may vary, but on average, atomic C:N:P ratios in both the soil (186:13:1) and the soil microbial biomass (60:7:1) are well-constrained at the global scale. We did see significant variation in soil and microbial element ratios between vegetation types (i.e., forest versus grassland), but in most cases, the similarities in soil and microbial element ratios among sites and across large scales were more apparent than the differences. Consistent microbial biomass element ratios, combined with data linking specific patterns of microbial element stoichiometry with direct evidence of microbial nutrient limitation, suggest that measuring the proportions of C, N and P in the microbial biomass may represent another useful tool for assessing nutrient limitation of ecosystem processes in terrestrial ecosystems.  相似文献   

2.
Decomposing residues can be an important source of nutrients for plants, especially of N and P, but the relationship between N and P release and microbial community dynamics have rarely been studied. Two pea (Pisum sativum L.) residues with contrasting chemical composition, shoots from flowering pea (Pea-Y) with 2.9 mg P and 36 mg N kg−1 and from mature pea (Pea-M) with 0.3 mg P and 13 mg N kg−1, were added at a rate of 20 g kg soil−1 to a sandy soil low in nutrients. Particulate organic matter (POM) was isolated on days (d) 0, 5, 15, 28, 42 and 61 after residue addition and analysed for C, N, P and microbial community structure (fatty acid methyl ester analysis). The recovery of POM from residue-amended soils decreased over time to 30–40% of added amounts for both residues. Apart from d 0, the N concentration in POM was lower in residue-amended soil than in the control. Due to a rapid decrease in P concentration during the first 5 days in Pea-Y and a slow increase over the whole experiment in Pea-M, P concentrations in POM on d 61 were similar in all treatments. In Pea-Y, the dynamics of C, N and P were coupled, with amounts of C, N and P decreasing during the first 15 days and remaining stable thereafter. In Pea-M, a steady loss of C from POM was contrasted by a slight increase in P. As a result, the C/P ratio decreased from 1,330 on d 0 to 390 on d 61. The C/N ratio of Pea-M decreased only during the second phase of decomposition. The different nutrient dynamics in Pea-Y and Pea-M led to similar amounts of N and P in POM towards the end of the incubation. Microbial community composition in the POM in Pea-Y and Pea-M remained distinct from the control, even though it changed over time. POM was shown to be an important source of potentially available nutrients after addition of plant residues. In the unamended soil, stable nutrient amounts in POM suggested very low net nutrient release from native POM compared to POM after residue addition.  相似文献   

3.
通过15年的红壤稻田长期定位试验,研究了不同施肥模式下土壤微生物生物量磷(MB-P)对土壤有机碳和磷素变化的响应.结果表明红壤稻田有机碳源的长期投入和土壤有机碳的逐年升高使土壤微生物生物量碳(MB-C)维持在较高水平(>800 mg·kg-1),是稻田土壤MB-P(>16.0 mg·kg-1)提高的主要原因.长期不施磷肥条件下,土壤全磷含量与试验前相比显著降低(P<0.05),而土壤有机磷含量平均提高了29.3%;土壤亏损的磷形态主要是无机磷(Al-P、Fe-P、Ca-P和O-P),其中Al-P含量处于最低水平(平均0.5 mg·kg-1).另外,长期不施磷肥土壤的MB-P远高于Olsen法提取态磷(Olsen-P)(<7.0 mg·kg-1),而稻田土壤MB-P与Al-P呈显著相关(P<0.05),表明土壤微生物对稻田土壤Al-P、Fe-P、Ca-P和O-P的利用是促进其向有效磷方向转化的关键途径.磷肥配合有机养分循环利用不仅提高了土壤磷库的积累,而且通过土壤微生物的活化有效地提高了土壤磷的有效性.  相似文献   

4.
S. Okano 《Plant and Soil》1990,129(2):219-225
A dwarf bamboo-type grassland soil (Thick High-humic Andosol) was nitrogen-limited for grass despite the presence of a considerable amount of microbial biomass N. By either treatments of air-drying and subsequent heating, the content of mineral N in the soil was increased by 3.7 g N and 11.7 g N m-2, respectively, after a 55-day incubation period. The efficiency of mineralized N for growth of orchardgrass was compared with nitrate-N added just before cultivation. The dry matter content of the grass increased from 81.7 g (control) to 169 g and to 337 g m-2 in the dried and in the heated soils, respectively, when N application was omitted. Of the mineral N released by air-drying and heating of the soil, 84% and 77% were absorbed by the grass, and 30% and 20% was assumed to be derived from microbial biomass, respectively. In contrast the grass apparently absorbed 54–56% of the 5 g nitrate-N m-2 added to the control and the air-dried soils. It was also noted that fungal biomass N had decreased by 1.5–1.9 g m-2 in the control soil after addition of 10 g nitrate-N m-2.  相似文献   

5.
Measurement of soil microbial biomass and abundance offers a means of assessing the response of all microbial populations to changes in the soil environment after a fire. We examined the effects of wildfire on microbial biomass C and N, and abundance of bacteria and fungi 2 months after a fire in a pine plantation. Soil organic carbon (Corg), total nitrogen (Ntot), and electrical conductivity (EC) increased following the fire. In terms of microbial abundance, the overall results showed that burned forest soils had the most bacteria and fungi. Microbial biomass C and N from soil in the burned forest were not significantly different from their unburned forest counterparts. However, microbial indices indicated that fire affects soil microbial community structure by modifying the environmental conditions. The results also suggested that low-intensity fire promotes microorganism functional activity and improves the chemical characteristics of soils under humid climatic conditions.  相似文献   

6.
To improve knowledge on the role of microbial processes in phosphorus (P) transformations in highly weathered subtropical soil, dynamics in microbial biomass C (BC) and P (BP), and Olsen-P in a subtropical Ultisol following amendments with glucose at 2 g C kg−1 soil (G2) and rice straw at 2 and 4 g C kg−1 soil (RS2 and RS4) was studied during a 43-day incubation period at 25°C and 45% of soil water-holding capacity. By 3 days, the amount of soil BC had increased about 3.2, 1.7, and 2.6 times for G2, RS2, and RS4, respectively. The amount of soil BC significantly decreased between 3 and 7 days for G2 and 3 and 14 days for RS4, and thereafter remained almost steady throughout the 43-day incubation period, at levels about 1.6–2.4 times larger than for the control (no organic amendment; CK). The amount of soil BP for G2 and RS4 almost doubled by 3 or 7 days, then remained relatively steady, and for RS2, maintained relatively constant (6.7–8.2 mg kg−1 soil) throughout 43-day incubation period, whereas it declined by about 50% for CK. A significant decrease (3.5 mg kg−1 soil) in Olsen-P occurred in G2 by 3 days; indicating a close response of available P to microbial immobilization. Also, the amounts of Al- and Fe-bound P in G2 and Fe-bound-P in RS4 decreased significantly, as determined at 43 days. In conclusion, organic amendment enhances microbial immobilization and transformations of P, but the turnover of BP behaves in different patterns as BC in highly weathered subtropical soil.  相似文献   

7.
米亚罗林区土地利用变化对土壤有机碳和微生物量碳的影响   总被引:22,自引:3,他引:22  
张于光  张小全  肖烨 《应用生态学报》2006,17(11):2029-2033
为了解土地利用变化对土壤有机碳和微生物量碳的影响,分析了川西米亚罗林区原始冷杉林、20世纪60年代云杉人工林、20世纪80年代云杉人工林和农地的土壤有机碳和微生物量碳状况.结果表明,土地利用变化明显地影响了土壤有机碳和微生物量碳含量.土壤有机碳和微生物量碳含量原始林最高,其次为60年代人工林和80年代人工林,农地最低.农地土壤有机碳含量分别比原始林、60年代人工林和80年代人工林低83%、53%和52%,微生物量碳含量分别低23%、25%和21%.土壤有机碳和微生物量碳含量均随土壤深度的增加而降低,并且两者在不同土地利用类型的变化趋势基本一致.相关分析表明,土壤有机碳和土壤微生物量碳与全氮、水解氮、速效磷呈极显著相关(P<0.01),说明土壤微生物量碳可作为衡量土壤有机碳变化的敏感指标,而土壤有机碳和微生物量碳含量可作为衡量土壤肥力和土壤质量变化的重要指标.  相似文献   

8.
Questions: Which nutrient(s) limit(s) vegetation productivity in Calthion grasslands? Is phosphorus release a bottleneck for restoration of species‐rich Calthion grasslands on rewetted dairy meadows? Location: Three species‐rich Calthion grasslands in the Western Peat District in the Netherlands. Methods: We conducted a field fertilization experiment with nitrogen (N), phosphorus (P) and potassium (K) in three existing Calthion grasslands to evaluate the potential for restoration on rewetted dairy meadows. Responses of above‐ground biomass, tissue nutrient concentrations and nutrient ratios were determined after 2 yr of fertilization. Results: Biomass increased with fertilization with N‐only and K‐only but did not react to P‐only additions. Comparisons of tissue nutrient concentrations and nutrient ratios also gave indications of N and K limitation. Conclusions: The strong P release expected after rewetting should not necessarily interfere with restoration of Calthion communities on rewetted dairy meadows. It is concluded that for successful restoration management measures should focus on reducing N and/or K availability. Potassium might be an overlooked bottleneck in the restoration of species‐rich grasslands.  相似文献   

9.
红壤丘陵景观单元土壤有机碳和微生物生物量碳含量特征   总被引:13,自引:0,他引:13  
为了探讨我国亚热带红壤丘陵区不同利用方式下土壤有机碳(SOC)和土壤微生物生物量碳(SMB-C)含量的特征,在湖南省桃源县选取典型样区,通过密集取样,分析了红壤丘陵景观单元内水田、旱地、林地、果园4种典型利用方式下表层土壤(0~20 cm)SOC和SMB-C含量.结果表明,典型红壤丘陵景观单元中SOC含量高低的顺序为水田(16.0 g·kg-1)>旱地(11.2 g·kg-1) >果园(9.5 g·kg-1)>林地(8.4 g·kg-1),SMB-C含量则为水田(830 mg·kg-1)>旱地(361 mg·kg-1)>林地(200 mg·kg-1)>果园(186 mg·kg-1),且在不同利用方式下SOC与SMB-C均呈极显著正相关(P<0.01),说明本研究区内各土地利用类型的土壤SMB-C含量变化可以敏感地指示SOC的动态.研究结果还表明,将我国亚热带红壤丘陵林地开垦为果园或耕地后,表层土壤 SOC含量不可能降低.  相似文献   

10.
不同施肥黑土微生物量氮变化特征及相关因素   总被引:30,自引:3,他引:27  
研究长期施用两种不同量有机肥(M2、M4)和化肥(NPK)的黑土微生物量N在作物生长季的变化特征.结果表明,施用有机肥黑土微生物量N显著高于施用化肥(NPK)和不施肥(CK),微生物量N季节波动小.微生物量N为M4 25.52~239.12mg·kg^-1,M2 10.40~94.31mg·kg^-1.NPK6.27~87.04mg·kg^-1,CK9.15~69.81mg·kg^-1,同一处理最大值与最小值相差7~14倍.M2、NPK处理微生物量N最大值出现在抽雄吐丝期,M4处理最大值出现在拔节期,CK处理最大值出现在播种期;不同处理微生物量N的差异并未因季节变化及玉米生育时期影响而明显改变.微生物量N的动态变化与极少数黑土生物、理化特性指标动态变化显著相关;微生物量N与黑土生物、理化特性,植物氮、磷、钾有极显著的正相关关系,与土壤含水量、籽粒粗蛋白含量呈显著正相关关系.  相似文献   

11.
长期培肥黑土微生物量磷动态变化及影响因素   总被引:15,自引:5,他引:15  
长期采用两种不同量有机肥(M2、M4)、化肥(NPK)方式培肥黑土,研究微生物量P在作物生长季动态变化.结果表明。施用有机肥微生物量P显著高于施用化肥(NPK)和不施肥(CK),微生物量P分别为M48.75~47.68mg·kg^-1,M2 3.02~37.16mg·kg^-1,NPK1.59~10.62mg·kg^-1,CK0.76~6.74mg·kg^-1之间,波动性较大.M4、M2处理微生物量P最大值出现在抽雄吐丝期,NPK、CK处理最大值出现在大喇叭口期;施肥数量和种类不同所引起的黑土微生物量P的差异并未因季节变化及玉米生育时期影响而明显改变.微生物量P的动态变化与绝大多数黑土生物、理化特性指标的动态变化没有显著的相关性;微生物量P与黑土生物、理化特性(除全钾外),植物氮、磷、钾含量有极显著的正相关关系,与黑土含水量呈显著正相关关系.  相似文献   

12.
In order to achieve sustainability in managed ecosystems we must understand management impacts on soil processes and clarify the regulatory role of the microbial community on these processes. Crop rotation and organic management practices are thought to have positive impacts on the microbial biomass; however, the specific impacts of crop rotation organic management on soil microbial ecology are largely unknown. The effect of organic management on soil microbial ecology was investigated using soils collected from the Rodale Institute Research Center's long-term Farming Systems Trial (FST) experiment. The FST, begun in 1981, included a manured and a cover cropped organic rotation and a conventionally managed grain based rotation. Soil respiration rates and13C-isotope fate in a companion study suggest that the biomass characteristics of the FST treatment soils were different in November 1991. However, direct measurement of the microbial community at this time using Phospholipid Fatty Acid Analysis (PLFA) did not identify statistically significant treatment based differences in soil biomass characteristics. Variability among the PLFA profiles of treatment replicates was as great as variability between farming systems. Treatment based trends were observed among selected PLFAs, particularly those present in large amounts, that were consistent with indirect biomass and biomass-dependent measures. Overall, PLFA profiles, soil respiration rates and13C-cycling suggested that the organic cover cropped soil had the Largest and most heterogeneous microbial population while the biomass of the organic-manure amended soil was the least heterogeneous, and the most metabolically active. Present address: University of Illinois, 11025. Goodwin ave. Urbana, IL 61801, USA  相似文献   

13.
Previous studies have shown that fertilization with nitrogen depresses overall microbial biomass and activity in soil. In the present study we broaden our understanding of this phenomenon by studying the seasonality of responses of specific microbial functional groups to chronic nitrogen additions in alpine tundra soils. We measured soil enzyme activities, mineralization kinetics for 8 substrates, biomass of 8 microbial functional groups, and changes in N and carbon pools in the soil. Our approach allowed us to compare the ability of the soil microbial biomass to utilize various substrates in addition to allowing us to estimate changes in biomass of microbial functional groups that are involved in carbon and nitrogen cycling. Overall microbial activity and biomass was reduced in fertilized plots, whereas pools of N in the soil and microbial biomass N were higher in fertilized plots. The negative effects of N were most prominent in the summer. Biomass of the dominant microbial functional groups recovered in fertilized soils during the winter and nitrogen storage in microbial biomass was higher in fertilized soils in the autumn and winter than in the summer. Microbial immobilization of N may therefore be a significant sink for added N during autumn and winter months when plants are not active. One large microbial group that did not recover in the winter in fertilized soils was phenol mineralizers, possibly indicating selection against microbes with enzyme systems for the breakdown of phenolic compounds and complex soil organic matter. Overall, this work is a step towards understanding how chronic N additions affect the structure and biogeochemical functioning of soil microbial communities.  相似文献   

14.
研究了脲酶抑制剂(NBPT)、硝化抑制剂(DCD)及二者组合在草甸棕壤上施用对尿素态N转化及土壤总有效态N、微生物量N的影响.结果表明,尿素配施NBPT、DCD及抑制剂组合能够增加尿素水解后土壤NH4^+含量2%-53%。显著降低了氧化态N的浓度,抑制了土壤中铵态N的氧化,增加土壤总有效N34%-44%,小麦吸N量增加0.26%-6.79%。其中以脲酶抑制剂与硝化抑制剂组合的效果最明显.抑制剂施用增加了微生物在小麦生长初期对有效态N固持,有利于后期土壤有效态N的矿化.  相似文献   

15.
In a biomass assay based on adenosine 5(')-triphosphate (ATP) bioluminescence, extracellular ATP is removed; then intracellular ATP is extracted from the microorganism by an ATP extractant and subsequently reacted with luciferase. To provide a highly sensitive assay, the concentration of benzalkonium chloride (BAC) in the ATP extractant was optimized by using a mutant luciferase resistant to BAC. The use of 0.2% BAC, which was acceptable for the luciferase, simultaneously achieved the maximum extraction of intracellular ATP from microorganisms and the inactivation of the ATP-eliminating enzymes for removal of extracellular ATP. The detection limit (blank+3 SD) for ATP was 1.8x10(-14)M (1.8x10(-18)mol/assay) in the presence of the ATP extractant with coefficients of variation of 0.7 to 6.3%. The reagent system coupled with the ATP-eliminating enzymes allowed for the detection of 93 colony-forming units (CFU)/ml of Escherichia coli ATCC 25922, 170CFU/ml of Pseudomonas aeruginosa ATCC 27853, 170CFU/ml of Proteus mirabilis ATCC 29906, 68CFU/ml of Staphylococcus aureus ATCC 25923, and 7.7CFU/ml of Bacillus subtilis ATCC 6051. The yeast cell of Saccharomyces cerevisiae IFO 10217 could be detected at 1CFU/ml. With 54 kinds of microorganisms, the average ATP extraction efficiency compared to the trichloroacetic acid extraction method was 81.0% in 24 strains among gram-negative bacteria, 99.4% in 13 strains among gram-positive bacteria, and 97.0% in 17 strains among yeast. The ATP contents of the gram-negative bacteria, gram-positive bacteria, and yeasts ranged from 0.40 to 2.70x10(-18)mol/CFU (mean=1.5x10(-18)mol/CFU), from 0.41 to 16.7x10(-18)mol/CFU (mean=5.5x10(-18)mol/CFU), and from 0.714 to 54.6x10(-16)mol/CFU (mean=8.00x10(-16)mol/CFU), respectively.  相似文献   

16.
红壤微生物量在土壤—黑麦草系统中的肥力意义   总被引:30,自引:11,他引:30  
研究了红壤微生物量与土壤养分循环及植物生长的内在联系.结果表明,红壤微生物量不仅与土壤有机碳、全氮、有效氮等显著相关,而且与植物干物质产量及吸N 量也存在着良好的相关性,可作为指示红壤肥力水平和作物产量的重要指标.试验测得的红壤微生物量N 周转期较短,每年通过微生物周转的N 素达到微生物量氮含量的1 .5 倍到数倍.  相似文献   

17.
The carbon content of microbial biomass and the kinetic characteristics of microbial respiration response to substrate addition have been estimated for chernozem soils under different land use: arable lands used for 10, 46, and 76 years, mowed meadow, natural forest, and forest shelter belt. Microbial biomass and the content of microbial carbon in humus (Cmic /Corg) decreased in the following order: soils under forest cenoses—mowed meadow—10-year arable land—46- and 75-year arable land. The amount of microbial carbon in the long-plowed horizon was 40% of its content in the upper horizon of natural forest. Arable soils were characterized by a lower metabolic diversity of microbial community and by the highest portion of microorganisms able to grow directly on glucose introduced into soil. The effects of different scenarios of carbon sequestration in soil on the amounts and activity of microbial biomass are discussed.  相似文献   

18.
通过2年田间定位试验,研究了冀东地区小麦 玉米轮作制度下,不同促腐条件下玉米秸秆配施化肥直接还田对土壤微生物量C、N、P动态变化的影响,并讨论了其与土壤养分和酶活性的关系.结果表明,秸秆配施化肥并调节其C/N条件下,施用促腐剂处理作物各生育期土壤微生物量C、N、P均表现出高于未施用处理的趋势,并使微生物量N、P达到高峰期的时间提前,对土壤养分调控效果较好.土壤微生物量C、N、P与土壤酶活性在作物各生育期均表现为显著和极显著正相关关系,但与土壤碱解氮、有效磷的相关性受到施肥制度和作物生长的强烈影响.  相似文献   

19.
For secondary forests, the major forest resources in China (accounting for more than 50% of the national total), soil respiration (R S) and the relationship between R S and various biotic/abiotic factors are poorly understood. The objectives of the present study were to examine seasonal variations in soil respiration during the growing season, and to explore the factors affecting the variation in soil respiration rates for three forest types (Mongolian oak, Manchurian walnut and mixed forests) of temperate secondary forest in Northeast China. The results showed that (1) the maximum total R S rate occurred in July, following a bell-shaped curve with season, (2) for all forest types, the total R S was significantly influenced by soil temperature (< 0.01), and did not significantly correlate with soil moisture, (3) compared with fine root biomass, coarse root biomass was more closely related with the root respiration in mixed forest (R 2 = 0.711, = 0.017) and in Manchurian walnut forest (R 2 = 0.768, = 0.010), and (4) microbial biomass carbon (MBC) and nitrogen were significantly correlated with heterotrophic R S in Mongolian oak forest (R 2 = 0.664, = 0.026; R 2 = 0.784, = 0.008, respectively) and in mixed forest (R 2 = 0.918, = 0.001; R 2 = 0.967, = 0.001, respectively). We can conclude that in temperate secondary forests: (1) the R S rate and the relationships between R S and abiotic/biotic factors change greatly with forest types, and (2) R S is strongly influenced by soil temperature, MBC, microbial biomass nitrogen and coarse root biomass in temperate secondary forests.  相似文献   

20.
三种纤毛虫对土壤微生物量和有效氮磷含量的影响   总被引:1,自引:0,他引:1  
孙焱鑫  林启美  赵小蓉 《生态学报》2003,23(6):1230-1233
采用土壤培养方法研究了 3种纤毛虫对土壤微生物量及氮磷转化的影响 ,结果表明 ,向土壤接种肾形虫 ( Colopodia sp.)、尖毛虫 ( Oxytricna sp.)和澳毛虫 ( Australothrix sp.) ,特别是澳毛虫 ,显著地降低了土壤微生物碳。说明供试的原生动物与微生物之间存在消长关系。接种澳毛虫显著地降低了土壤有效磷含量 ,而肾形虫和尖毛虫对土壤有效磷含量影响很小 ,仅在培养后期显著地降低了土壤铵态氮含量 ,3种原生动物特别是澳毛虫 ,显著地降低了土壤氮矿化量和硝态氮含量 ,但提高了土壤铵态氮含量 ,说明 3种原生动物抑制了硝化作用 ,而增强了氨化作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号