首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Na, K-ATPase function was studied in order to evaluate the mechanism of increased colonic Na+ transport during early postnatal development. The maximum Na+-pumping activity that was represented by the equivalent short-circuit current after addition of nystatin (I sc N ) did not change during postnatal life or after adrenalectomy performed in 16-day-old rats.I sc N was entirely inhibited by ouabain; the inhibitory constant was 0.1mm in 10-day-old (young) and 0.4mm in 90-day-old (adult) rats. The affinity of the Na, K pump for Na+ was higher in young (11mm) than in adult animals (19mm). The Na, K-ATPase activity (measured after unmasking of latent activity by treatment with sodium dodecylsulfate) increased during development and was also not influenced by adrenalectomy of 16-day-old rats. The inhibitory constant for ouabain (K I ) was not changed during development (0.1–0.3mm). Specific [3H]ouabain binding to isolated colonocytes increased during development (19 and 82 pmol/mg protein), the dissociation constant (K D ) was 8 and 21 m in young and adult rats, respectively. The Na+ turnover rate per single Na, K pump, which was calculated fromI sc N and estimated density of binding sites per cm2 of tissue was 500 in adult and 6400 Na+/min·site in young rats. These data indicate that the very high Na+ transport during early postnatal life reflects an elevated turnover rate and increased affinity for Na+ of a single isoform of the Na, K pump. The development of Na+ extrusion across the basolateral membrane is not directly regulated by corticosteroids.  相似文献   

2.
The phosphorylated intermediate (EP) of the Na,K-ATPase proteoliposomes (PL) prepared from the electric eel enzyme is composed of an ADP-sensitive K+-insensitive form (E1P), an ADP- and K+-sensitive form (E*P), and a K+-sensitive ADP-insensitive form (E2P). The composition of the intermediate varied with the cholesterol content of the lipid bilayer. The PL containing less than 30 mol % cholesterol (LCPL) formed E2P-rich EP in the presence of 10 mM Na+ on both sides at 15 degrees C, while the PL containing more than 35 mol % cholesterol (HCPL) formed E*P-rich EP under the same condition. In the presence of ionophore (monensin, nigericin, A23187), the HCPL formed E2P-rich EP as reported in the preceding paper. The turnover rate of Na-ATPase activity (the ratio of Na-ATPase to the EP level) in the LCPL was lower than that in the HCPL, and the addition of 20 microM monensin or A23187 to the HCPL reduced the Na-ATPase activity. The coupling ratio of Na+ influx (cellular efflux):Na+ efflux (cellular influx):ATP hydrolysis was 2.8:1.8:1 in the LCPL, although 1.6:0.6:1 in the HCPL. The coupling ratio of Na+ influx:ATP hydrolysis in the HCPL increased to 2.8:1 in the presence of A23187. Moreover, the increase of ATP concentration enhanced not only the Na-ATPase activity in the LCPL and HCPL with monensin but also the Na+ influx in the LCPL. This ATP enhancement was not found, however, in the HCPL without ionophores. The ADP enhancement of the Na+ influx was not observed in either the HCPL or the LCPL. We conclude from these observations that there are at least two different phosphorylation-dephosphorylation cycles (an E2P cycle and an E*P cycle) in the PL in the absence of K+. The E2P cycle transports three Na+ from the extravesicular (cytoplasmic) to the intravesicular (extracellular) side and two Na+ in the opposite direction per cycle and is similar to the ATP-dependent Na+-Na+ exchange system already reported (Blostein, R. (1983) J. Biol. Chem. 258, 7948-7953; Cornelius, F., and Skou, J. C. (1985) Biochim. Biophys. Acta 818, 211-221). However, the E*P cycle transports one Na+ from the extravesicular to the intravesicular side/cycle and has not yet been previously reported.  相似文献   

3.
The murine renal Na,K-ATPase is resistant to cardiac glycosides. It is not yet known however whether altered active transport is associated with the drug-resistance. To investigate this problem Na,K-ATPases were purified from the outer medulla of both rat and rabbit kidneys and reconstituted identically into liposomes. The Na-stimulation of the Na,K-ATPase activity before reconstitution and of the Na-transport after reconstitution was measured. A Na-defect inherent in the ouabain-resistant rat Na,K-ATPase was discovered indicating a link between the cardiac glycoside sensitivity and the Na-transport.  相似文献   

4.
Oligomycin occludes Na+ in an E1-form of the Na,K-ATPase. The rate constants for the release of Na+ from the E1-form and for the transition to the E2-form are about 0.5 s-1. The effect of oligomycin is not seen using other cations which also have a Na+-like effect on the enzyme conformation. The inhibitory effect of oligomycin on the ADP-ATP dependent Na:Na exchange but not on the accompanying ADP-ATP exchange can be explained from a decrease in the rate of release of Na+ from an E1 approximately phosphoform with Na+ occluded, E'1 approximately P (Na3), i.e. with Na+ in the membrane phase, to an E"1 approximately PNa3 form with Na+ not occluded. E"1 approximately PNa3 is at a step before formation of E2-P, and disappears at a high rate when ADP reacts with E"1 approximately P (Na3).  相似文献   

5.
The stoichiometry of pump-mediated Na/K exchange was studied in isolated epithelial sheets of frog skin. 42K influx across basolateral membranes was measured with tissues in a steady state and incubated in either beakers or in chambers. The short-circuit current provided estimates of Na+ influx at the apical membranes of the cells. 42K influx of tissues bathed in Cl- or SO4-Ringer solution averaged approximately 8 microA/cm2. Ouabain inhibited 94% of the 42K influx. Furosemide was without effect on pre-ouabain-treated tissues but inhibited a ouabain-induced and Cl--dependent component of 42K influx. After taking into account the contribution of the Na+ load to the pump by way of basolateral membrane recycling of Na+, the stoichiometry was found to increase from approximately 2 to 6 as the pump-mediated Na+ transport rate increased from 10 to 70 microA/cm2. Extrapolation of the data to low rates of Na+ transport (less than 10 microA/cm2) indicated that the stoichiometry would be in the vicinity of 3:2. As pump-mediated K+ influx saturates with increasing rates of Na+ transport, Na+ efflux cannot be obligatorily coupled to K+ influx at all rates of transepithelial Na+ transport. These results are similar to those of Mullins and Brinley (1969. Journal of General Physiology. 53:504-740) in studies of the squid axon.  相似文献   

6.
The effect of choline iodide, bromide and chloride on the kinetics of the electrogenic sodium transport by the Na,K-ATPase was investigated in a model system of ATPase-containing membrane fragments adsorbed on the lipid bilayer membrane. The kinetic parameters of Na+ transport were determined from short circuit currents after fast release of ATP from its caged precursor. The falling phase of the current transients could be fitted by a single exponential with the time constant, τ 2. Its temperature dependence allowed an estimation of the activation energy of the rate-limiting reaction step, the conformation transition E1/E2. Choline iodide and bromide caused a decrease of the activation energy as well as the overall rate of the process expressed as the pre-exponential factor A of the Arrhenius equation. If choline iodide or bromide were present on the cytoplasmic and extracellular sides of the protein, the temperature dependent changes were more pronounced than when present on the cytoplasmic side only. These results can be explained by an effect of the anions on water structure on the extracellular surface of the protein, where a deep access channel connects the ion-binding sites with the solution. Chloride ions also caused a deceleration of the electrogenic transport, however, in contrast to iodide or bromide, they did not affect the activation energy, and were more effective when added on the cytoplasmic side. This effect can be explained by asymmetric screening of the negative surface charges which leads to a transmembrane electric potential that modifies the ion transfer.  相似文献   

7.
8.
Changes of 42K efflux (J23K) caused by ouabain and/or furosemide were measured in isolated epithelia of frog skin. From the kinetics of 42K influx (J32K) studied first over 8-9 h, K+ appeared to be distributed into readily and poorly exchangeable cellular pools of K+. The readily exchangeable pool of K+ was increased by amiloride and decreased by ouabain and/or K+-free extracellular Ringer solution. 42K efflux studies were carried out with tissues shortcircuited in chambers. Ouabain caused an immediate (less than 1 min) increase of the 42K efflux to approximately 174% of control in tissues incubated either in SO4-Ringer solution or in Cl-Ringer solution containing furosemide. Whereas furosemide had no effect on J23K in control tissues bathed in Cl-rich or Cl-free solutions, ouabain induced a furosemide-inhibitable and time-dependent increase of a neutral Cl-dependent component of the J23K. Electroconductive K+ transport occurred via a single-filing K+ channel with an n' of 2.9 K+ efflux before ouabain, normalized to post-ouabain (+/- furosemide) values of short-circuit current, averaged 8-10 microA/cm2. In agreement with the conclusions of the preceding article, the macroscopic stoichiometry of ouabain-inhibitable Na+/K+ exchange by the pump was variable, ranging between 1.7 and 7.2. With increasing rates of transepithelial Na+ transport, pump-mediated K+ influx saturated, whereas Na+ efflux continued to increase with increases of pump current. In the usual range of transepithelial Na+ transport, regulation of Na+ transport occurs via changes of pump-mediated Na+ efflux, with no obligatory coupling to pump-mediated K+ influx.  相似文献   

9.
Uncoupled Na+-efflux on reconstituted shark Na,K-ATPase is electrogenic   总被引:3,自引:0,他引:3  
In liposomes with reconstituted shark Na,K-ATPase produced to contain sucrose addition of external Na+ and ATP induce an uncoupled Na+-efflux on inside-out oriented pumps which can be inhibited by digitoxigenin. This flux mode is found to be electrogenic and accompanied by hydrolysis of ATP. The coupling ratio of Nacyt transported per ATP split is 3:1 measured as the initial rate of rise in transmembrane potential and initial rate of liberated Pi.  相似文献   

10.
11.
The Na,K-ATPase   总被引:15,自引:0,他引:15  
The energy dependent exchange of cytoplasmic Na+ for extracellular K+ in mammalian cells is due to a membrane bound enzyme system, the Na,K-ATPase. The exchange sustains a gradient for Na+ into and for K+ out of the cell, and this is used as an energy source for creation of the membrane potential, for its de- and repolarisation, for regulation of cytoplasmic ionic composition and for transepithelial transport. The Na,K-ATPase consists of two membrane spanning polypeptides, an -subunit of 112-kD and a -subunit, which is a glycoprotein of 35-kD. The catalytic properties are associated with the -subunit, which has the binding domain for ATP and the cations. In the review, attention will be given to the biochemical characterization of the reaction mechanism underlying the coupling between hydrolysis of the substate ATP and transport of Na+ and K+.  相似文献   

12.
《The Journal of cell biology》1987,105(6):2613-2619
The protease sensitivity of the catalytic alpha-subunit of Na,K-ATPase during intracellular transport along the exocytic pathway has been investigated in two amphibian epithelial cell lines. Controlled trypsinolysis followed by immunoprecipitation of cell homogenates or microsomal fractions from [35S]methionine pulse-chased A6 kidney cells revealed distinct cleavage patterns by SDS-PAGE. Shortly after synthesis (7-min pulse), the 98-kD alpha-subunit is fully sensitive to trypsin digestion and is cleaved into a 35-kD membrane-bound and a 27.5- kD soluble peptide. With a 15-min pulse, 10% of the newly synthesized polypeptide becomes resistant to trypsin digestion. With longer chase time, the proportion of protease-resistant alpha-subunit further increases. Concomitantly, the alpha-subunit acquires the ability to undergo cation-dependent conformational transitions, as reflected by distinct tryptic digest patterns in the presence of Na+ or K+. Similar results were obtained in TBM cells, a toad bladder cell line. Our data indicate that the catalytic subunit of Na,K-ATPase is structurally rearranged during intracellular transport from its site of synthesis to its site of action at the cell surface, a modification which might mark the functional maturation of the enzyme.  相似文献   

13.
The effect of ions on the thermostability and unfolding of Na,K-ATPase from shark salt gland was studied and compared with that of Na,K-ATPase from pig kidney by using differential scanning calorimetry (DSC) and activity assays. In 1 mM histidine at pH 7, the shark enzyme inactivates rapidly at 20 °C, as does the kidney enzyme at 42 °C (but not at 20 °C). Increasing ionic strength by addition of 20 mM histidine, or of 1 mM NaCl or KCl, protects both enzymes against this rapid inactivation. As detected by DSC, the shark enzyme undergoes thermal unfolding at lower temperature (Tm ≈ 45 °C) than does the kidney enzyme (Tm ≈ 55 °C). Both calorimetric endotherms indicate multi-step unfolding, probably associated with different cooperative domains. Whereas the overall heat of unfolding is similar for the kidney enzyme in either 1 mM or 20 mM histidine, components with high mid-point temperatures are lost from the unfolding transition of the shark enzyme in 1 mM histidine, relative to that in 20 mM histidine. This is attributed to partial unfolding of the enzyme due to a high hydrostatic pressure during centrifugation of DSC samples at low ionic strength, which correlates with inactivation measurements. Addition of 10 mM NaCl to shark enzyme in 1 mM histidine protects against inactivation during centrifugation of the DSC sample, but incubation for 1 h at 20 °C prior to addition of NaCl results in loss of components with lower mid-point temperatures within the unfolding transition. Cations at millimolar concentration therefore afford at least two distinct modes of stabilization, likely affecting separate cooperative domains. The different thermal stabilities and denaturation temperatures of the two Na,K-ATPases correlate with the respective physiological temperatures, and may be attributed to the different lipid environments.  相似文献   

14.
The effect of ions on the thermostability and unfolding of Na,K-ATPase from shark salt gland was studied and compared with that of Na,K-ATPase from pig kidney by using differential scanning calorimetry (DSC) and activity assays. In 1 mM histidine at pH 7, the shark enzyme inactivates rapidly at 20 degrees C, as does the kidney enzyme at 42 degrees C (but not at 20 degrees C). Increasing ionic strength by addition of 20 mM histidine, or of 1 mM NaCl or KCl, protects both enzymes against this rapid inactivation. As detected by DSC, the shark enzyme undergoes thermal unfolding at lower temperature (Tm approximately 45 degrees C) than does the kidney enzyme (Tm approximately 55 degrees C). Both calorimetric endotherms indicate multi-step unfolding, probably associated with different cooperative domains. Whereas the overall heat of unfolding is similar for the kidney enzyme in either 1 mM or 20 mM histidine, components with high mid-point temperatures are lost from the unfolding transition of the shark enzyme in 1 mM histidine, relative to that in 20 mM histidine. This is attributed to partial unfolding of the enzyme due to a high hydrostatic pressure during centrifugation of DSC samples at low ionic strength, which correlates with inactivation measurements. Addition of 10 mM NaCl to shark enzyme in 1 mM histidine protects against inactivation during centrifugation of the DSC sample, but incubation for 1 h at 20 degrees C prior to addition of NaCl results in loss of components with lower mid-point temperatures within the unfolding transition. Cations at millimolar concentration therefore afford at least two distinct modes of stabilization, likely affecting separate cooperative domains. The different thermal stabilities and denaturation temperatures of the two Na,K-ATPases correlate with the respective physiological temperatures, and may be attributed to the different lipid environments.  相似文献   

15.
In the phosphoenzyme (EP) of the electric eel Na,K-ATPase, the sum of the ADP-sensitive EP and the K+-sensitive EP exceeds 150% of EP in the presence of 100 mM Na+. This unusual phenomenon can be explained by the formation of three phosphoenzymes: ADP-sensitive K+-insensitive (E1P), K+-sensitive ADP-insensitive (E2P), and ADP- and K+-sensitive (E*P) phosphoenzymes, as proposed by N?rby et al. (N?rby, J. G., Klodos, I., and Christiansen, N. O. (1983) J. Gen. Physiol. 82, 725-757). By applying a simple approximation method for the assay of E1P, E*P, and E2P, it was found that the phosphorylation of the enzyme was much faster than the conversion among each EP and the phosphoenzyme changed as E1NaATP----E1P----E*P----E2P. In the fragmental eel enzyme, the step of E*P to E2P was much slower than the step of E1P to E*P. In the steady state, the E1P was predominant above 400 mM Na+, whereas E*P and E2P were predominant between 60 and 300 mM Na+ and below 60 mM Na+, respectively. The characteristic difference of the eel enzyme from the beef brain enzyme and probably from the kidney enzyme seems to be that the dissociation constant of Na+ on the E1P-E*P equilibrium is higher than that on the E*P-E2P. The E*P and E1P both interacted with ADP to form ATP without formation of inorganic phosphate in the absence of free Mg2+. In the Na,K-ATPase proteoliposomes, the vesicle membrane interfered with the conversion of E1P to E2P, especially the change of E1P to E*P, and furthermore, the E1P content increased. This barrier effect was partially counteracted by monensin or carbonyl cyanide m-chlorophenylhydrazone. Oligomycin reacted with E1P and probably with E*P, therefore inhibiting their conversion to E2P and interaction with K+.  相似文献   

16.
17.
The erythrocytes of the echidna (Tachyglossus aculeatus) and platypus (Ornithorhynchus anatinus), which are practically devoid of intracellular ATP content (1), were examined for active Rb86 influx and for the presence of Na+K+Mg ATPase. We found that intact erythrocytes of both species possess the ability to actively transport cations. Ouabain sensitive Rb86 influx in the echidna was approximately 0.17 μmoles/ml cells × hr, whereas the platypus exhibited a higher value of 0.43 μmoles/ml cells × hr. Surprisingly, ouabain sensitive Na+K+Mg ATPase activity of isolated membranes was high amounting to some 15 to 25 fold higher than the human erythrocyte counterpart determined under identical conditions. These findings suggest that a trace amount of ATP is sufficient to maintain active cation transport across the monotreme cell membranes.  相似文献   

18.
Evidence is emerging that the nuclear envelope itself is responsible for transport and signaling activities quite distinct from those associated with the nuclear pore. For example, the envelope has a Ca2+-signaling pathway that, among other things, regulates meiosis in oocytes. The nuclear envelope's outer membrane also contains K+ channels. Here we show that Na+/K+ gradients exist between the nuclear envelope lumen and both cytoplasm and nucleoplasm in hepatocyte nuclei. The gradients are formed by Na,K-ATPases in the envelope's inner membrane, oriented with the ATP hydrolysis site in the nucleoplasm. We further demonstrate nucleoplasm/cytoplasm Na+ and K+ gradients, of which only the Na+ gradient is dissipated directly by Na,K-ATPase inhibition with ouabain. Finally, our results demonstrate that nuclear pores are not freely permeable to sodium and potassium. Based on these results and numerous in vitro studies, nuclear monovalent cation transporters and channels are likely to play a role in modulation of chromatin structure and gene expression.  相似文献   

19.
Alterations in amino acid transport in Na,K-ATPase amplified HeLa cells   总被引:2,自引:0,他引:2  
Amino acid transport was studied in C1 cells which contain amplified levels of sodium- and potassium-activated adenosine triphosphatase (Na,K-ATPase), in C4 cells which are ouabain-sensitive revertants, and in parental HeLa S3. Sodium-dependent uptake of aminoisobutyric acid and alanine was increased 2-fold in the amplified C1 cells. After a 6 h amino acid starvation period, the rate of sodium-dependent uptake of methylaminoisobutyric acid was 70-90% greater for C1 than for C4 and HeLa. This uptake was inhibitable by ouabain and the apparent Km values for high affinity uptake were similar in all three lines. Overall, neutral amino acid uptake through Systems A, ASC, and L was 2-fold higher in the Na,K-ATPase amplified C1 cells relative to C4 or HeLa. The induction of System A uptake of methylaminoisobutyric acid after starvation was more rapid in both the amplified C1 cells and the revertant C4 when compared to HeLa, which suggests that the selection for amplification of the Na,K-ATPase produced membrane alterations affecting the adaptive regulation of System A.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号