首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Bromoethanesulfonate (BES) inhibition of methanogenesis from methanol by resting-cell suspensions or cell extracts of Methanosarcina was reversed by coenzyme M. BES inhibition of methylcoenzyme M methylreductase activity in cell-free extracts was reversed by methylcoenzyme M but not by coenzyme M. Methanol/coenzyme M methyltransferase activity was not inhibited by 10 microM BES. Inhibition of methylreductase by BES and 3-bromopropionate was competitive with methylcoenzyme M, but inhibition by 2-bromoethanol exhibited mixed kinetics. The Ki values for the inhibitors in cell-free extracts were similar to the concentrations which inhibited intact cells. BES-resistant mutants of strain 227 were apparently permeability mutants because in vitro assays showed that mutant and parent strain methylreductases were equally sensitive to BES.  相似文献   

2.
Methanosarcina barkeri strain 227 maintained on an acetate medium for 2 years was found to possess hydrogenase, methylcoenzyme M methylreductase, coenzyme F420, and coenzyme M. The levels of these constituents in acetate-grown cells were similar to those found in cells of the same strain grown on methanol or hydrogen and carbon dioxide.  相似文献   

3.
Methanosarcina barkeri strain 227 maintained on an acetate medium for 2 years was found to possess hydrogenase, methylcoenzyme M methylreductase, coenzyme F420, and coenzyme M. The levels of these constituents in acetate-grown cells were similar to those found in cells of the same strain grown on methanol or hydrogen and carbon dioxide.  相似文献   

4.
The structure of component B of the methylcoenzyme M methylreductase system of Methanobacterium thermoautotrophicum was recently found to be 7-mercaptoheptanoylthreonine phosphate (HS-HTP). The work described here demonstrates that this compound is found in two forms: enzyme-free and enzyme-bound. HS-HTP was found to be bound to component C of the methylcoenzyme M methylreductase system. The cofactor extracted from the protein by heat denaturation was found to comigrate with the mixed disulfide of HS-HTP and 2-mercaptoethanol by high-performance liquid chromatography, suggesting HS-HTP is not modified in the bound state.  相似文献   

5.
Uridine-5'-diphospho-N-acetylglucosamine, when oxidized with periodate to the corresponding aldehyde (o-UDP-GlcNAc), was a potent inhibitor of the methylcoenzyme M methylreductase reaction which catalyzes the reductive demethylation of methylcoenzyme M to methane. The oxidation product, o-UDP-GlcNAc, appears to bind to the UDP-GlcNAc site of the enzyme and inhibits the reduction of methylcoenzyme M both by MRF or its active hydrolytic fragment HS-HTP. The kinetic patterns indicate that o-UDP-GlcNAc inhibition is noncompetitive with HS-HTP or MRF, and the Hill coefficient indicated that there was cooperativity between the UDP and HS-HTP binding sites. The methylreductase enzyme was protected from o-UDP-GlcNAc inhibition by prior exposure to low concentrations of MRF. HS-HTP, at the same concentration as MRF, was not effective in protecting the enzyme from inhibition by o-UDP-GlcNAc.  相似文献   

6.
R Fischer  R K Thauer 《FEBS letters》1990,269(2):368-372
Cell extracts of Methanosarcina barkeri grown on acetate catalyzed the conversion of acetyl-CoA to CO2 and CH4 at a specific rate of 50 nmol min-1 mg-1. When ferredoxin was removed from the extracts by DEAE-Sephacel anion exchange chromatography, the extracts were inactive but full activity was restored upon addition of purified ferredoxin from M. barkeri or from Clostridium pasteurianum. The apparent Km for ferredoxin from M. barkeri was determined to be 2.5 M. A ferredoxin dependence was also found for the formation of CO2, H2 and methylcoenzyme M from acetyl-CoA, when methane formation was inhibited by bromoethanesulfonate. Reduction of methyl-coenzyme M with H2 did not require ferredoxin. These and other data indicate that ferredoxin is involved as electron carrier in methanogenesis from acetate. Methanogenesis from acetyl-CoA in cell extracts was not dependent on the membrane fraction, which contains the cytochromes.  相似文献   

7.
Cell extracts of acetate-grown Methanosarcina strain TM-1 and Methanosarcina acetivorans both contained CH3-S-CoM methylreductase activity. The methylreductase activity was supported by CO and H2 but not by formate as electron donors. The CO-dependent activity was equivalent to the H2-dependent activity in strain TM-1 and was fivefold higher than the H2-dependent activity of M. acetivorans. When strain TM-1 was cultured on methanol, the CO-dependent activity was reduced to 5% of the activity in acetate-grown cells. Methanobacterium formicicum grown on H2-CO2 contained no CO-dependent methylreductase activity. The CO-dependent methylreductase of strain TM-1 had a pH optimum of 5.5 and a temperature optimum of 60 degrees C. The activity was stimulated by the addition of MgCl2 and ATP. Both acetate-grown strain TM-1 and acetate-grown M. acetivorans contained CO dehydrogenase activities of 9.1 and 3.8 U/mg, respectively, when assayed with methyl viologen. The CO dehydrogenase of acetate-grown cells rapidly reduced FMN and FAD, but coenzyme F420 and NADP+ were poor electron acceptors. No formate dehydrogenase was detected in either organism when grown on acetate. The results suggest that a CO-dependent CH3-S-CoM methylreductase system is involved in the pathway of the conversion of acetate to methane and that free formate is not an intermediate in the pathway.  相似文献   

8.
Component A2 of the methylcoenzyme M methylreductase system of Methanobacterium thermoautotrophicum has been purified 370-fold by liquid chromatography. Homogeneity was obtained by anaerobic preparative polyacrylamide gel electrophoresis. Component A2 is a colorless, air-stable protein consisting of a single polypeptide as indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The relative molecular mass of the native protein was determined by high-performance, size exclusion chromatography to be Mr 52,000; on sodium dodecyl sulfate-polyacrylamide gel electrophoresis a value of Mr 59,000 was obtained. When cell extract was subjected to N6-ATP-agarose affinity chromatography the methylcoenzyme M methylreductase system was resolved into two fractions; one of them was component A2. This work provides a new operational definition for component A2, i.e., its characteristic chromatographic behavior on N6-ATP-agarose. However, its functional definition is its ability to reconstitute the methylreductase activity with components A1, A3, and C. Several attempts to assign a role to component A2 are reported.  相似文献   

9.
Different preparations of the methylreductase were tested in a simplified methylcoenzyme M methylreductase assay with artificial electron donors under a nitrogen atmosphere. ATP and Mg2+ stimulated the reaction. Tris(2,2'-bipyridine)ruthenium (II), chromous chloride, chromous acetate, titanium III citrate, 2,8-diaminoacridine, formamidinesulfinic acid, cob(I)alamin (B12s), and dithiothreitol were tested as electron donors; the most effective donor was titanium III citrate. Methylreductase (component C) was prepared by 80% ammonium sulfate precipitation, 70% ammonium sulfate precipitation, phenyl-Sepharose chromatography, Mono Q column chromatography, DEAE-cellulose column chromatography, or tetrahydromethanopterin affinity column chromatography. Methylreductase preparations which were able to catalyze methanogenesis in the simplified reaction mixture contained contaminating proteins. Homogeneous component C obtained from a tetrahydromethanopterin affinity column was not active in the simplified assay but was active in a methylreductase assay that contained additional protein components.  相似文献   

10.
The structure of component B of the methylcoenzyme M methylreductase system from Methanobacterium thermoautotrophicum was recently found to be 7-mercaptoheptanoylthreonine phosphate (HS-HTP). Three potential roles for this cofactor were considered. First, a methyl thioether derivative of the cofactor was synthesized to investigate its possible role as a methyl donor. This derivative was found to be incapable of acting as a substrate for methanogenesis and proved inhibitory. Secondly, an adenylated form of the cofactor was considered as the potential active form of the coenzyme. This possibility was ruled out based upon collaborative observations with Ankel-Fuchs et al. (FEBS Lett., in press) that HS-HTP is required by the methylreductase system even when ATP is not. Finally, HS-HTP was found to act as a reductant in a partially-purified methylreductase preparation that was incubated under nitrogen. The rate of methane production from HS-HTP exceeded that from other thiols or hydrogen.  相似文献   

11.
In cell extracts of Methanosarcina barkeri, the methylcoenzyme M methylreductase system with H2 as the electron donor was inhibited by NAD+ and NADP+, but NADH and NADPH had no effect on enzyme activity. NAD+ (4 and 8 mM) shifted the saturation curve for methylcoenzyme M from hyperbolic (Hill coefficient [nH] = 1.0; concentration of substrate giving half maximal velocity [Km] = 0.21 mM) to sigmoidal (nH = 1.5 and 2.0), increased Km (Km = 0.25 and 0.34 mM), and slightly decreased Vmax. Similarly NADP+ at 4m and 8 mM increased nH to 1.6 and 1.85 respectively, but the Km values (0.3 and 0.56 mM) indicated that NADP+ was a more efficient inhibitor than NAD+.  相似文献   

12.
Component A3 of the methylcoenzyme M methylreductase system of Methanobacterium thermoautotrophicum (strain delta H) has been resolved into two fractions. One, named component A3a, was defined as the fraction required along with components A2 and C to produce methane from 2-(methylthio)ethanesulfonate when titanium(III) citrate was used as the sole source of electrons. The second one, named component A3b, was required when H2 and 7-mercapto-N-heptanoyl-O-phospho-L-threonine were provided as the dual source of electrons. Component A3a was a large iron-sulfur protein aggregate (Mr 500,000) and is most likely involved in providing electrons at a low potential for the reductive activation of component C.  相似文献   

13.
High rates of methanogenesis from acetate and ATP were observed from cell-free extracts of the thermophilic acetotrophic methanogen Methanothrix (Methanosaeta) thermophila strain CALS-1 when cultures were grown in a pH auxostat fed with acetic acid. Specific methanogenic activities ranged from 50–300 nmol min–1 (mg protein)–1, which was comparable to those for whole cells. In contrast to results with Methanosarcina spp., the reaction did not require high levels of H2 in the headspace. CO was inhibitory to methanogenesis from acetate. The inhibition by CO and the lack of effect of H2 on methanogenesis from acetate resemble previous results with whole cells of CALS-1. Protein concentrations in extracts > 5 mg/ml were required for good activity, and the optimum temperature for the methanogenesis was near 65° C. ATP was required in substrate quantities and was converted mainly to AMP. The maximum CH4/ATP stoichiometry obtained was near 1.0, consistent with acetate activation using an acetyl-CoA synthetase mechanism that converts ATP to AMP and pyrophosphate. Methanogenesis in extracts was inhibited by bromoethane sulfonate and cyanide, indicating the involvement of methylcoenzyme M methylreductase and a carbon monoxide dehydrogenase complex with methanogenesis from acetate. These results are consistent with acetyl-coenzyme A (CoA) as the form of activated acetate involved in methanogenesis from acetate in strain CALS-1, but no activity could be obtained from extracts using acetyl-CoA as a substrate. Received: 18 March 1996 / Accepted: 14 June 1996  相似文献   

14.
Cell extracts from acetate-grown Methanosarcina thermophila contained CO-oxidizing:H2-evolving activity 16-fold greater than extracts from methanol-grown cells. Following fractionation of cell extracts into soluble and membrane components, CO-dependent H2 evolution and CO-dependent methyl-coenzyme M methylreductase activities were only present in the soluble fraction, but addition of the membrane fraction enhanced both activities. A b-type cytochrome(s), present in the membrane fraction, was linked to a membrane-bound hydrogenase. CO-oxidizing:H2-evolving activity was reconstituted with: (i) CO dehydrogenase complex, (ii) a ferredoxin, and (iii) purified membranes with associated hydrogenase. The ferredoxin was a direct electron acceptor for the CO dehydrogenase complex. The ferredoxin also coupled CO oxidation by CO dehydrogenase complex to metronidazole reduction.  相似文献   

15.
The cofactor required in the methylcoenzyme M methylreductase reaction was shown to be a large molecule with an Mr of 1149.21 in the free acid form. The cofactor, named MRF for methyl reducing factor, was identified from analyses by fast atom bombardment mass spectrometry and 1H, 13C, and 31P NMR spectroscopy as uridine 5'-[N-(7-mercaptoheptanoyl)-O-3-phosphothreonine-P-yl(2-acetamido- 2-deoxy- beta-mannopyranuronosyl)(acid anhydride)]-(1----4)-O-2-acetamido-2-deoxy- alpha-glucopyranosyl diphosphate. MRF contains N-(7-mercaptoheptanoyl)threonine O-3-phosphate (HS-HTP) [No11, K. M., Rinehart, K. L., Tanner, R. S., & Wolfe, R. S. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 4238-4242] and is linked to C-6 of 2-acetamido-2-deoxymannopyranuronic acid of the UDP-disaccharide through a carboxylic-phosphoric anhydride linkage. It is postulated that this bond is responsible for the instability of the molecule and its hydrolysis during isolation. Analyses of Eadie and Hofstee plots of the methylcoenzyme M methylreductase reaction indicate that MRF has a 6-fold lower Km(app) than HS-HTP and a 50% greater Vmax. This suggests that the UDP-disaccharide moiety may be of importance in the binding of MRF to the enzyme active site.  相似文献   

16.
When Methanobacterium thermoautotrophicum cells were incubated in 50 mM potassium phosphate buffer (pH 7.0) containing 1 M sucrose and autolysate from Methanobacterium wolfei, they were transformed into protoplasts. The protoplasts, which possessed no cell wall, lysed in buffer without sucrose. Unlike whole cells, the protoplasts did not show convoluted internal membrane structures. The protoplasts produced methane from H2-CO2 (approximately 1 mumol min-1 mg of protein-1) at about 50% the rate obtained for whole cells, and methanogenesis was coupled with ATP synthesis. Addition of the protonophore 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF-6847) to protoplast suspensions resulted in a dissipation of the membrane potential (delta psi), and this was accompanied by a parallel decrease in the rates of ATP synthesis and methanogenesis. In this respect protoplasts differed from whole cells in which ATP synthesis and methanogenesis were virtually unaffected by the addition of the protonophore. It is concluded that the insensitivity of whole cells to protonophores could be due to internal membrane structures. Membrane preparations produced from lysis of protoplasts or by sonication of whole cells gave comparatively low rates of methanogenesis (methylcoenzyme M methylreductase activity, less than or equal to 100 nmol of CH4 min-1 mg of protein-1), and no coupling with ATP synthesis could be demonstrated.  相似文献   

17.
The structure of component B of the methylcoenzyme M methylreductase of Methanobacterium thermoautotrophicum was recently assigned as 7-mercaptoheptanoylthreonine phosphate (HS-HTP) (Noll, K. M., Rinehart, K. L., Jr., Tanner, R.S., and Wolfe, R.S. (1986) (Proc. Natl. Acad. Sci. U.S.A. 83, 4238-4242). We report here the chemical synthesis and biochemical activity of this compound. Thiourea and 7-bromoheptanoic acid were used to to synthesize 7,7'-dithiodiheptanoic acid. This disulfide was then condensed with DL-threonine phosphate using N-hydroxysuccinimide and dicyclohexylcarbodiimide. The product was reduced with dithiothreitol to give HS-HTP. It could be oxidized in air in the presence of 2-mercaptoethanol to give the compound as it was isolated from cell extracts. The resulting product was identical to the authentic compound by 1H NMR spectroscopy, mass spectrometry, and coelution using high performance liquid chromatography. The synthetic compound is active in the in vitro methanogenic assay at concentrations comparable to the authentic compound. This confirms the structure of component B as HS-HTP and provides a means to synthesize quantities sufficient for studies of the methylreductase system.  相似文献   

18.
The pathway of acetate catabolism in Methanosarcina barkeri strain MS was studied by using a recently developed assay for methanogenesis from acetate by soluble enzymes in cell extracts. Extracts incubated with [2-14C]acetate, hydrogen, and ATP formed 14CH4 and [14C]methyl coenzyme M as products. The apparent Km for acetate conversion to methane was 5 mM. In the presence of excess acetate, both the rate and duration of methane production was dependent on ATP. Acetyl phosphate replaced the cell extract methanogenic requirement for both acetate and ATP (the Km for ATP was 2 mM). Low concentrations of bromoethanesulfonic acid and cyanide, inhibitors of methylreductase and carbon monoxide dehydrogenase, respectively, greatly reduced the rate of methanogenesis. Precipitation of CO dehydrogenase in cell extracts by antibodies raised to 95% purified enzyme inhibited both CO dehydrogenase and acetate-to-methane conversion activity. The data are consistent with a model of acetate catabolism in which methylreductase, methyl coenzyme M, CO dehydrogenase, and acetate-activating enzymes are components. These results are discussed in relation to acetate uptake and rate-limiting transformation mechanisms in methane formation.  相似文献   

19.
The methylcoenzyme M methylreductase reaction has an absolute requirement for 7-mercaptoheptanoylthreonine phosphate or component B, which is the active component of the intact molecule previously referred to as cytoplasmic cofactor. A hydrolytic fragment of cytoplasmic cofactor has been purified and identified as uridine 5'-(O-2-acetamido-2-deoxy-beta-manno-pyranuronosyl acid (1----4)-2-acetamido-2-deoxy-alpha-glucopyranosyl diphosphate) by high resolution NMR and fast atom bombardment mass spectro-metry. It is postulated that UDP-disaccharide may function to anchor 7-mercaptoheptanoyl threonine phosphate at the active site of the methyl-reductase enzyme complex.  相似文献   

20.
The gene for component A2 of the methylcoenzyme M reductase system from Methanobacterium thermoautotrophicum delta H was cloned, and its nucleotide sequence was determined. The gene for A2, designated atwA, encodes an acidic protein of 59,335 Da. Amino acid sequence analysis revealed partial homology of A2 to a number of eucaryotic and bacterial proteins in the ATP-binding cassette (ABC) family of transport systems. Component A2 possesses two ATP-binding domains. A 2.2-kb XmaI-BamHI fragment containing atwA and the surrounding open reading frames was cloned into pGEM-7Zf(+). A cell extract from this strain replaced purified A2 from M. thermoautotrophicum delta H in an in vitro methylreductase assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号