首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for cytofluorometric analysis of mitochondrial membrane potential has been developed by using TMRM as a cationic, mitochondrial selective probe. The method is based on limited treatment of cultured cells with digitonin which permeabilises the plasma membrane and leaves mitochondria intact. The resulting signal of TMRM-stained cells thus represents only the probe accumulated in mitochondria. Fibroblasts and cybrids were used as a model cell systems and optimal conditions for digitonin treatment and staining by TMRM were described. The TMRM signal collapsed by valinomycin, KCN and antimycin A and FCCP titration was used to gradually lower and characterise the stability of . The method is suitable for sensitive measurement of in different types of cultured cells.  相似文献   

2.
Cannabinoids were found to augment phospholipase activities and modify lipid levels of mouse brain synaptosomes, myelin and mitochondria. Delta-1-tetrahydrocannabinol (1-THC) and several of its metabolites induced a dose-dependent (0.32–16 M) stimulation of phospholipase A2 (PLA2) activity resulting in the increased release of free arachidonic acid from exogenous [1-14C]phosphatidylcholine (PC). The potencies of the cannabinoids in modulating PLA2 activity were approximately of the order: 7-OH-1-THC > 1-THC > 7-oxo-1-THC > 1-THC-7oic acid = 6 OH-1-THC 6-OH-1-THC. The hydrolysis of phosphatidylinositol (PI) by synaptosomal phospholipase C (PLC) was enhanced significantly by 1-THC and promoted diacylglyceride levels by greater than 100 percent compared to control values. In contrast, arachidonate was the major product resulting from phospholipase activities of a 20,000g pellet. Synaptosomal diacylglyceride lipase activity was inhibited by 1-THC. [1-14C]Arachidonic acid was readily incorporated into subcellular membrane phospholipids and after exposure to cannabinoids led to diminished phosphoglyceride levels and concomitant increases in released neutral lipid products. These data suggest that cannabinoids control phospholipid turnover and metabolism in mouse brain preparations by the activation of phospholipases and, through this mechanism, may exert some of their effects.  相似文献   

3.
A cDNA for a structurally variant acyl-acyl carrier protein (ACP) desaturase was isolated from milkweed (Asclepias syriaca) seed, a tissue enriched in palmitoleic (16:19)* and cis-vaccenic (18:111) acids. Extracts of Escherichia coli that express the milkweed cDNA catalyzed 9 desaturation of acyl-ACP substrates, and the recombinant enzyme exhibited seven- to ten-fold greater specificity for palmitoyl (16:0)-ACP and 30-fold greater specificity for myristoyl (14:0)-ACP than did known 9-stearoyl (18:0)-ACP desaturases. Like other variant acyl-ACP desaturases reported to date, the milkweed enzyme contains fewer amino acids near its N-terminus compared to previously characterized 9-18:0-ACP desaturases. Based on the activity of an N-terminal deletion mutant of a9 -18:0-ACP desaturase, this structural feature likely does not account for differences in substrate specificities.  相似文献   

4.
Summary We tested 163 strains of fungi and bacteria for their ability to (–)-1-(3R, 4R)-tetrahydrocannabinol (= 1-THC) in vivo. In the experiments 51 strains were found to be active and were further tested under varying conditions. The screening is described and the metabolites of 1-THC obtained from the incubations are characterized by their two-dimensional thin-layer Rf values and the color of the azo dyes formed by reacting the cannabinoids with Fast Blue B Salt reagent on the thin-layer plates. Cell-free systems were prepared from four strains of fungi and tested for in vitro conversion of 1-THC. In two of these systems conversion of 1-THC to metabolites could be demonstrated.Part 1, see Binder (1976)  相似文献   

5.
Araus  J.L.  Casadesús  J.  Asbati  A.  Nachit  M.M. 《Photosynthetica》2001,39(4):591-596
The relationship between ash content and carbon isotope discrimination () was studied in durum wheat (Triticum durum Desf.) grown in a Mediterranean region (Northwest Syria) under three different water regimes (hereafter referred to as environments). In two of these environments, 144 genotypes were cultivated under rain-fed conditions. In the third environment, 125 genotypes were cultivated under irrigation. Ash content was measured in the flag leaf about 3 weeks after anthesis, whereas was analysed in mature kernels. Total transpiration of the photosynthetic tissues of the culm contributing, from heading to maturity, to the filling of kernels was also estimated. Leaf ash content, expressed either on dry matter or leaf area basis or as total ash per blade, correlated positively (p< 0.001) with in the three environments. However, this relationship was not the result of a positive correlation across genotypes between and tissue water content. Moreover, only a small part of the variation in across genotypes was explained by concomitant changes in ash content. When all genotypes across the three environments were plotted, and ash content followed a non-linear relationship (r 2 = 74), with tending to a plateau as the ash content increased. However, for the set of genotypes and environments combined, total ash content per leaf blade was positively and linearly related (r 2 = 0.76) with the accumulated culm transpiration. The non-linear nature of the relationship between ash content and is sustained by the fact that culm transpiration also showed a non-linear relationship with kernel . Therefore, differences in leaf ash content between environments, and to a lesser extent between genotypes, seem to be brought about by variations in accumulated transpiration during grain formation.  相似文献   

6.
We investigated the flash-induced electrochromic absorbance change, A 515, of isolated intact chloroplasts in continuous monochromatic background light of different intensities and wavelengths. From the variation of the amplitude of A 515 in background illumination the steady-state turnover time of electron transport was found to be around 100 msec and the slowest process could be assigned to a photosystem 1 driven cycle. The change of pH induced by nigericin, ATP, or ADP did not modify substantially the turnover time.In contrast to earlier observations the slow rise (10 msec) of A 515 in untreated chloroplasts persists also at high-intensity background illumination exciting both photosystems. The proportion of the slow rise of A 515 in nigericin-treated chloroplasts increases in the presence of background light. This result on the slow rise is discussed in terms of two different models existing in the literature.  相似文献   

7.
To identify potential diets for rearing captive freshwater mussels, the protein, carbohydrate (CHO), and lipid contents of two green algae, Neochloris oleoabundans, Bracteacoccus grandis, and one diatom, Phaeodactylum tricornutum, were compared at different growth stages. The fatty acid and sterol composition were also identified. Protein was greatest (55–70%) for all species at late log growth stage (LL), and declined in late stationary (LS) growth. CHO was greatest at LS stage for all species (33.9–56.4% dry wt). No significant change in lipid levels occurred with growth stage, but tended to increase in N. oleoabundans. Mean lipid content differed significantly in the order: N. oleoabundans > P. tricornutum > B. grandis. Total fatty acids (TFA) were higher at LS stage compared to other stages in the two green algae, and stationary stage in the diatom. Mean unsaturated fatty acids (UFA) as %TFA was significantly higher in N. oleoabundans than the other species. The green algae contained high percentages of C-18 polyunsaturated fatty acids (PUFAs), while the diatom was abundant in C-16 saturated and mono-unsaturated fatty acids and C-20 PUFA fatty acids. Growth stage had no effect on sterol concentration of any species. B. grandis showed significantly higher sterol levels than the other species except P. tricornutum at S stage. B. grandis was characterized by predominantly 5, C-29 sterols, while N. oleoabundans synthesized 5,7, 5,7,22 , and 7, C-28 sterols. P. tricornutum produced primarily a 5,22, C-28 sterol, and a small amount of a 7,22, C-28 sterol.  相似文献   

8.
The maximal growth rate of the marine cyanobacterium Oscillatoria brevis was reached at 200–400 mM NaCl and pH 9.0–9.6. NaCl was found (i) to stimulate the rate of the light-supported generation across the cytoplasmic membrane of the cells and (ii) to decrease the sensitivity of level and motility of the O. brevis trichomes to protonophorous uncouplers. The Na+/H+ antiporter, monensin, increased both and the uncoupler sensitivity of the cells. The data obtained agree with the assumption that O. brevis possesses a primary Na+ pump in its cytoplasmic membrane.Abbreviations ATP adenosine-5-triphosphate - TTFB tetrachlortrifluoromethylimidazol - CCCP carbonyl cyanide m-chlorophenylhydrazone - Na+ transmembrane electrochemical potential differences of Na+ - transmembrane electric potential difference - pNa transmembrane pNa difference  相似文献   

9.
In this work the protonmotive force (p), as well as the subcellular distribution of malate, ATP, and ADP were determined in perfused liver from rats fed a low fat or high fat diet, using density gradient fractionation in non acqueous solvents.Rats fed a high fat diet, despite an enhanced hepatic oxygen consumption, exhibit similar p to that found in rats fed a low fat diet, but when we consider the two components of p, we find a significant decrease in mitochondrial/cytosolic pH difference (pHm) and a significant increase in mitochondrial membrane potential (m) in rats fed a high fat diet compared to rats fed a low fat diet, which tend to compensate each other. In rats fed a high fat diet the concentration ratio of malate and ATP/ADP does not reflect the changes in pHm and m, which represent the respective driving force for their transport.The findings are in line with an increase in substrate supply to the respiratory chain which is, however, accompanied by a higher energy turnover in livers from HFD rats. By this way the liver could contribute to the lack of weight gain from the high caloric intake in HFD rats.  相似文献   

10.
SCM2, a novel gene encoding a yeast tryptophan permease, was cloned as a high-copy-number suppressor of cse2-1. The cse2-1 mutation causes cold sensitivity, temperature sensitivity and chromosome missegregation. However, only the cold-sensitive phenotype of cse2-1 cells is suppressed by SCM2 at high copy. SCM2 is located on the left arm of yeast chromosome XV, adjacent to SUP3 and encodes a 65 kDa protein that is highly homologous to known amino acid permeases. Four out of five disrupted scm2 alleles (scm21-4) cause slow growth, whereas one disrupted allele (scm25) is lethal. Cells with both the scm21 and trp1-101 mutations exhibit a synthetic cold-sensitive phenotype and grow much more slowly at the permissive temperature than cells with a single scm21 or trp1-101 mutation. A region of the predicted SCM2 protein is identical to the partial sequence recently reported for the yeast tryptophan permease TAP2, indicating that SCM2 and TAP2 probably encode the same protein.  相似文献   

11.
H+-transhydrogenase couples the reversible transfer of hydride ion equivalents between NAD(H) and NADP(H) to the translocation of protons across a membrane. There are separate sites on the enzyme for the binding of NAD(H) and of NADP(H). There are some indications of the position of the binding sites in the primary sequence of the enzymes from mitochondria andEscherichia coli. Transfer of hydride ion equivalents only proceeds when a reduced and an oxidized nucleotide are simultaneously bound to the enzyme. When p=0 the rate of interconversion of the ternary complexes of enzyme and nucleotide substrates is probably limiting. An increase in p accelerates the rate of interconversion in the direction of NADH NADP+ until another kinetic component, possibly product release, becomes limiting. The available data are consistent with either direct or indirect mechanisms of energy coupling.Abbreviations DCCD N N1-dicyclohexylcarbodiimide - FSBA 51-[p-(fluorosulfonyl)benzoyl] adenosine - FCCP carbonylcyanide-p-fluoromethoxyphenylhydrazone - H+-Thase H+-transhydrogenase - thio-NADP+ thionicotinamide adenine dinucleotide phosphate - AcPdAd+ 3-acetylpyridine adenine dinucleotide - p proton electrochemical gradient - membane potential - pH pH difference across the membrane  相似文献   

12.
Deuterium isotope effects and fractionation factors of N1...H3–N3 hydrogen bonded Watson–Crick A:T base pairs of two DNA dodecamers are presented here. Specifically, two-bond deuterium isotope effects on the chemical shifts of 13C2 and 13C4, 213C2 and 213C4, and equilibrium deuterium/protium fractionation factors of H3, , were measured and seen to correlate with the chemical shift of the corresponding imino proton, H3. Downfield-shifted imino protons associated with larger values of 213C2 and 213C4 and smaller values, which together suggested that the effective H3–N3 vibrational potentials were more anharmonic in the stronger hydrogen bonds of these DNA molecules. We anticipate that 213C2, 213C4 and values can be useful gauges of hydrogen bond strength of A:T base pairs.  相似文献   

13.
Summary The frequency of the F508 deletion (F508) has been analyzed in 189 cystic fibrosis (CF) patients from the European part of the USSR, viz. 127 nothern Slavonians (Leningrad region), 30 southern Slavonians (the Ukraine), 10 central Slavonians (Moscow region), 14 Moldavians (Kishenev region) and 8 Lithuanians (Vilnius region). The distribution of CF+ chromosomes with and without F508 varied significantly in the different ethnic groups studied and correlated with the clinical manifestation of CF. The overall frequency of F508 in Slavonian patients is equal to 62.5%, approximately 90% of them being heterozygous or homozygous for this mutation. The frequency of the deletion among 99 Slavonian patients with severe disease manifestation (pancreatic insufficiency, PI) is equal to 67.5%, only 12 patients having pancreatic sufficiency (PS, 17.5%). The highest value of F508 (77.4%) is registered in PI/CF patients of the southern Slavonian group; it is much less frequent (about 57%) in relevant groups of Slavonians from the northern and central parts of the country. Unusually low frequencies (24% and 26%) of F508 are detected in a few samples of Lithuanian and Moldavian CF patients, respectively. All F508+CF-chromosomes of Slavonian origin are associated with haplotypes 2.2.2. defined by the restriction fragment length polymorphism sites KM19/PstI, CS.7/Hin6I and MP6d-9/MspI, although a high proportion (about 25%) of unknown mutations is associated with the same haplotype. Haplotype B (allele 1XV2c/TaqI; allele 2 KM19/PstI) accounts for 91% of F508+CF chromosomes. Our data are consistent with the hypothesis of a single origin and subsequent diffusion of this major CF mutation; however, its interpopulational dissemination in Eastern Europe does not follow the suggested south-east to north-west gradient in Western Europe. The significance of these data for prenatal diagnosis and carrier screening of CF mutations is briefly discussed.  相似文献   

14.
Samples of the Clusiaceae generaClusia, Oedematopus andDystovomita were collected at various sites and different altitudes in northern and south-western Venezuela. Analyses of stable isotopes of carbon and hydrogen and of leaf-nitrogen levels were performed on the dried samples. Correlations among these variables, i.e. carbon isotope discrimination (), hydrogen isotope ratio (D) and N-levels, and with altitude were assessed. In the samples, where values of above 15 indicate predominant performance of C3 photosynthesis, there were slight tendencies of increasing , D and N-levels with increasing altitude and of increasing with increasing N. Although these correlations taken separately were not statistically significant, they support each other and indicate increasing transpiration and increased leaf-nutrient supply at increasing altitude. Performance of crassulacean acid metabolism (CAM) in species ofClusia appears to be restricted to altitudes below 1500 m a.s.l. There was a significant negative correlation of with altitude in the samples, where values of below 10 indicated predominant performance of CAM. This suggests that phases II and IV of CAM are progressively suppressed towards the upper altitudinal limit of CAM inClusia in northern Venezuela. It is concluded that among the large number of environmental factors and combinations thereof, which determine the expression of CAM inClusia and trigger C3-CAM transitions in C3/CAM intermediate species, low availability of water is the most important.  相似文献   

15.
A model of membrane potential-dependent distribution of oxonol VI to estimate the electrical potential difference across Schizosaccharomyces pombe plasma membrane vesicles (PMV) has been developed. was generated by the H+-ATPase reconstituted in the PMV. The model treatment was necessary since the usual calibration of the dye fluorescence changes by diffusion potentials (K+ + valinomycin) failed. The model allows for fitting of fluorescence changes at different vesicle and dye concentrations, yielding in ATP-energized PMV of 80 mV. The described model treatment to estimate may be applicable for other reconstituted membrane systems.  相似文献   

16.
Summary Juvenile Antarctic krill (Euphausia superba) were fed the diatom Phaeodactylum tricornutum at concentrations ranging from 0.0–5.0 mgCl-1. Intermoult period (IP) decreased, but an increment of body length per moult (BL) of juvenile krill increased, up to a concentration of 1.0 mgCl-1. No further effect of food concentrations on IP or BL was seen at concentration beyond 1.0 mgCl-1. IP plateaued at 23.8 days and BL, 1.14 mm. The maximum daily growth rate (BL/IP) of juvenile krill was calculated to be 0.047 mm day-1. BL and IP were correlated and the relationship is expressed as BL=-0.0066IP+2.47 (r=0.58, n=141, P<0.01). Growth conditions of krill in the Southern Ocean are discussed in terms of available food concentration in there.  相似文献   

17.
The regulation by adenylates of activities of various partial electron transport systems in spinach chloroplasts was studied using systems from H2O to 2,5-dimethyl-p-benzoquinone, H2O to 2,6-dichlorophenolindophenol, reduced 2,6-dichlorophenolindophenol to methyl viologen, and H2O to methyl viologen or ferricyanide. Adenylates regulated all of them. The ratio of the amount of esterified Pi (P) to that of electrons transported (e) in coupling with phosphorylation manifested that there are two phosphorylation sites: one between H2O and 2,5-dimethyl-p-benzoquinone or 2,6-dichlorophenolindophenol and another between reduced 2,6-dichlorophenolindophenol and methyl viologen, under the proposed stoichiometries,i.e., P/H+=0.5 and H+/e=1, where H+ is the amount of protons pumped by electron transport (= those translocated during phosphorylation), when the basal electron transport (the part not regulated by adenylates) was excluded. The effects of pH, phlorizin, and methylamine on the adenylate regulation of electron transport, and the stimulation profile of electron transport coupled with quasiarsenylation suggested no distinction between the two phosphorylation sites.  相似文献   

18.
Summary Measurements were made of the difference in the electrochemical potential of protons ( ) across the membrane of vesicles reconstituted from the ATPase complex (TF 0 ·F 1) purified from a thermophilic bacterium and P-lipids. Two fluorescent dyes, anilinonaphthalene sulfonate (ANS) and 9-aminoacridine (9AA) were used as probes for measuring the membrane potential () and pH difference across the membrane ( pH), respectively.In the presence of Tris buffer the maximal and no pH were produced, while in the presence of the permeant anion NO 3 the maximal pH and a low were produced by the addition of ATP. When the ATP concentration was 0.24mm, the was 140–150 mV (positive inside) in Tris buffer, and the pH was 2.9–3.5 units (acidic inside) in the presence of NO 3 . Addition of a saturating amount of ATP produced somewhat larger and pH values, and the attained was about 310 mV.By trapping pH indicators in the vesicles during their reconstitution it was found that the pH inside the vesicles was pH 4–5 during ATP hydrolysis.The effects of energy transfer inhibitors, uncouplers, ionophores, and permeant anions on these vesicles were studied.  相似文献   

19.
Summary A convenient procedure for the isolation of specificEcoRI-fragments ofE. coli genome and their amplification on Km-resistance plasmid vector CK 11 is described. The hybrid molecules were constructedin vitro usingEcoRI-digestion, followed by ligation. Then appropriatedE. coli strain was transformed with ligated DNA mixture and hybrid plasmids CK 11-arg +, CK 11-his +, CK 11-thr + and CK 11-leu + containing loci ofE. coli genome were selected by molecular cloning. The hybrid plasmids obtained consisted of oneEcoRI-fragment of initial plasmid CK 11 and one respective specific portion ofE. coli genome.  相似文献   

20.
Streptococcus mutans Ingbritt was grown in glucose-excess continuous culture to repress the glucose phosphoenolpyruvate phosphotransferase system (PTS) and allow investigation of the alternative glucose process using the non-PTS substrate, (3H) 6-deoxyglucose. After correcting for non-specific adsorption to inactivated cells, the radiolabelled glucose analogue was found to be concentrated approximately 4.3-fold intracellularly by bacteria incubated in 100 mM Tris-citrate buffer, pH 7.0. Mercaptoethanol or KCl enhanced 6-deoxyglucose uptake, enabling it to be concentrated internally by at least 8-fold, but NaCl was inhibitory to its transport. Initial uptake was antagonised by glucose but not 2-deoxyglucose. Evidence that 6-deoxyglucose transport was driven by protonmotive force (p) was obtained by inhibiting its uptake with the protonophores, 2,4-dinitrophenol, carbonylcyanide m-chlorophenylhydrazine, gramicidin and nigericin, and the electrical potential difference () dissipator, KSCN. The membrane ATPase inhibitor, N,N1-dicyclohexyl carbodiimide, also reduced 6-deoxyglucose uptake as did 100 mM lactate. In combination, these two inhibitors completely abolished 6-deoxyglucose transport. This suggests that the driving force for 6-deoxyglucose uptake is electrogenic, involving both the transmembrane pH gradient (pH) and . ATP hydrolysis, catalysed by the ATPase, and lactate excretion might be important contributors to pH.Abbreviations DNP 2,4-dinitrophenol - CCCP carbonylcyanide m-chlorophenylhydrazone - DCCD N,N1-dicyclohyxyl carbodiimide - p protonmotive force - pH transmembrane pH gradient - transmembrane electrical potential difference  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号