首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Recent work has identified the topology of almost all the inner membrane proteins in Escherichia coli, and advances in nuclear magnetic resonance spectroscopy now allow the determination of α-helical membrane protein structures at high resolution. Together these developments will help overcome the current limitations of high-throughput determination of membrane protein structures.  相似文献   

2.
Tsoka S  Ouzounis CA 《FEBS letters》2000,480(1):42-48
Computational genomics is a subfield of computational biology that deals with the analysis of entire genome sequences. Transcending the boundaries of classical sequence analysis, computational genomics exploits the inherent properties of entire genomes by modelling them as systems. We review recent developments in the field, discuss in some detail a number of novel approaches that take into account the genomic context and argue that progress will be made by novel knowledge representation and simulation technologies.  相似文献   

3.
4.
A discussion of the activities of Crown Zellerbach Corporation in the field of developing, producing and worldwide marketing of pure chemicals of commerce from the forest, including comments on some new chemicals being developed.  相似文献   

5.
6.
7.
Novel methods allowing to analyze the human genome make it possible to assess old questions such as the molecular basis of structural chromosome anomalies and the diathesis to aneuploidy. The architecture of the human genome as unravelled by the human genome sequencing project allows to explain the recurrence of microdeletions and microduplications caused by a non allelic homologous recombination involving segmental duplications created during the evolution of primates. This structural feature of the human genome is associated with a novel class of genetic diseases called genomic disorders as opposed to genetic diseases due to gene mutations. The study of the parental and cellular origin of aneuploidy shed new light on the different mechanisms controlling meiosis in man and woman. In addition it contributes to define the role of maternal age and genetic recombination on the behavior of chromosomes during meiosis. These new data greatly contribute to our understanding of human chromosomal diseases.  相似文献   

8.
There are approximately 25 000 species in the division Teleostei and most are believed to have arisen during a relatively short period of time ca. 200 Myr ago. The discovery of 'extra' Hox gene clusters in zebrafish (Danio rerio), medaka (Oryzias latipes), and pufferfish (Fugu rubripes), has led to the hypothesis that genome duplication provided the genetic raw material necessary for the teleost radiation. We identified 27 groups of orthologous genes which included one gene from man, mouse and chicken, one or two genes from tetraploid Xenopus and two genes from zebrafish. A genome duplication in the ancestor of teleost fishes is the most parsimonious explanation for the observations that for 15 of these genes, the two zebrafish orthologues are sister sequences in phylogenies that otherwise match the expected organismal tree, the zebrafish gene pairs appear to have been formed at approximately the same time, and are unlinked. Phylogenies of nine genes differ a little from the tree predicted by the fish-specific genome duplication hypothesis: one tree shows a sister sequence relationship for the zebrafish genes but differs slightly from the expected organismal tree and in eight trees, one zebrafish gene is the sister sequence to a clade which includes the second zebrafish gene and orthologues from Xenopus, chicken, mouse and man. For these nine gene trees, deviations from the predictions of the fish-specific genome duplication hypothesis are poorly supported. The two zebrafish orthologues for each of the three remaining genes are tightly linked and are, therefore, unlikely to have been formed during a genome duplication event. We estimated that the unlinked duplicated zebrafish genes are between 300 and 450 Myr. Thus, genome duplication could have provided the genetic raw material for teleost radiation. Alternatively, the loss of different duplicates in different populations (i.e. 'divergent resolution') may have promoted speciation in ancient teleost populations.  相似文献   

9.
10.
New developments in anti-HIV chemotherapy   总被引:17,自引:0,他引:17  
  相似文献   

11.
Multiphoton laser-scanning microscopy is still developing rapidly, both technologically and by broadening its range of application. Technical progress has been made in the optimization of fluorophores, in increasing the imaging depth of multiphoton microscopy, and in microscope miniaturization. These advances further facilitate the study of neuronal structure and signaling in living and even in behaving animals, in particular in combination with the expression of fluorescent proteins. In addition, nonlinear optical contrast mechanisms other than multiphoton excitation of fluorescence are being explored.  相似文献   

12.
13.
The design, synthesis and chromatographic operation of a new range of stable and selective immobilized dye affinity adsorbents for potential application in the purification of pharmaceutical proteins is described. Computer aided molecular design has been exploited to design novel dye ligands which show a predictable selectivity for the target protein and which, when coupled to stable perfluoropolymer supports, yield high capacity, low leakage adsorbents for affinity chromatography. It is anticipated that these new materials will withstand the rigorous conditions required for sanitization and cleaning in situ of industrial scale processes.  相似文献   

14.
Research on Pleistocene art is a dynamic and thriving area. Many new advances and discoveries have been made since the last major review of this topic.1 Indeed, thanks to the introduction of direct dating and detailed analysis of pigments, the last few years can arguably be described as the most exciting and most important phase in Ice Age art studies since such art was first discovered and validated.  相似文献   

15.
Oxidative fermentations have been well established for a long time, especially in vinegar and in L-sorbose production. Recently, information on the enzyme systems involved in these oxidative fermentations has accumulated and new developments are possible based on these findings. We have recently isolated several thermotolerant acetic acid bacteria, which also seem to be useful for new developments in oxidative fermentation. Two different types of membrane-bound enzymes, quinoproteins and flavoproteins, are involved in oxidative fermentation, and sometimes work with the same substrate but produce different oxidation products. Recently, there have been new developments in two different oxidative fermentations, D-gluconate and D-sorbitol oxidations. Flavoproteins, D-gluconate dehydrogenase, and D-sorbitol dehydrogenase were isolated almost 2 decades ago, while the enzyme involved in the same oxidation reaction for D-gluconate and D-sorbitol has been recently isolated and shown to be a quinoprotein. Thus, these flavoproteins and a quinoprotein have been re-assessed for the oxidation reaction. Flavoprotein D-gluconate dehydrogenase and D-sorbitol dehydrogenase were shown to produce 2-keto- D-gluconate and D-fructose, respectively, whereas the quinoprotein was shown to produce 5-keto- D-gluconate and L-sorbose from D-gluconate and D-sorbitol, respectively. In addition to the quinoproteins described above, a new quinoprotein for quinate oxidation has been recently isolated from Gluconobacter strains. The quinate dehydrogenase is also a membrane-bound quinoprotein that produces 3-dehydroquinate. This enzyme can be useful for the production of shikimate, which is a convenient salvage synthesis system for many antibiotics, herbicides, and aromatic amino acids synthesis. In order to reduce energy costs of oxidative fermentation in industry, several thermotolerant acetic acid bacteria that can grow up to 40 degrees C have been isolated. Of such isolated strains, some thermotolerant Acetobacter species were found to be useful for vinegar fermentation at a high temperature such 38-40 degrees C, where mesophilic strains showed no growth. They oxidized higher concentrations of ethanol up to 9% without any appreciable lag time, while alcohol oxidation with mesophilic strains was delayed or became almost impossible under such conditions. Several useful Gluconobacter species of thermotolerant acetic acid bacteria are also found, especially L-erythrulose-producing strains and cyclic alcohol-oxidizing strains. Gluconobacter frateurii CHM 43 is able to rapidly oxidize meso-erythritol at 37 degrees C leading to the accumulation of L-erythrulose, which may replace dihydroxyacetone in cosmetics. G. frateuriiCHM 9 is able to oxidize cyclic alcohols to their corresponding cyclic ketones or aliphatic ketones, which are known to be useful for preparing many different physiologically active compounds such as oxidized steroids or oxidized bicyclic ketones. The enzymes involved in these meso-erythritol and cyclic alcohol oxidations have been purified and shown to be a similar type of membrane-bound quinoproteins, consisting of a high molecular weight single peptide. This is completely different from another quinoprotein, alcohol dehydrogenase of acetic acid bacteria, which consists of three subunits including hemoproteins.  相似文献   

16.
A report on the 15th International Society of Developmental Biologists Congress, Sydney, Australia, 3-7 September 2005.  相似文献   

17.
New developments in microarray technology   总被引:17,自引:0,他引:17  
Microarrays have emerged as indispensable research tools for gene expression profiling and mutation analysis. New classification of cancer subtypes, dissecting the yeast metabolism and large-scale genotyping of human single nucleotide polymorphisms are important results being obtained with this technique. Realizing the microsphere-based massively parallel signature sequencing technique as fluid microarrays, building new types of protein arrays and constructing miniaturized flow-through systems, which can potentially take this technology from the research bench into industrial, clinical and other routine applications, exemplify the intense developments that are now ongoing in this field.  相似文献   

18.
19.
The year 2001 may well be called the Year of the Human Genome. Less in the limelight, but equally exciting for plant scientists, is the rapid progress in plant genomics. With relatively modest resources, a lot has been achieved. The Arabidopsis genomic sequence (125 megabases [Mb]) is essentially finished, and rice sequencing is progressing rapidly. For many species, expressed sequence tag (EST) resources are plentiful, allowing broad inter-specific comparisons. At the same time, development of integrated physical-genetic maps for large-genome crop species is not progressing as rapidly as desired, while resources for the complete sequencing of these crops are not likely to become available. Some important plant genomes are so large that their complete sequencing may not be practical for many years. Significant plant genome research is concentrated in industry, and not freely available, creating some frustration in the academic community. Growing interest is anticipated in the development of metabolic profiling technologies, RNA profiling, proteomics and integrated systems approaches to plant biology.  相似文献   

20.
New developments at BIONET   总被引:1,自引:1,他引:0       下载免费PDF全文
BIONET has made considerable progress in developing communication links among molecular biologists and biochemists worldwide. We describe these efforts and also note the many new enhancements to the BIONET system itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号