首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When rat red cell ghosts were incubated with 0.1-0.5 mM CdCl2 in 10 mM Tris-HCl (pH 7.4) at 37 degrees C for 30 min, they became irregular in shape and released small vesicles. The release of vesicles was dependent on the incubation temperature and Cd2+ concentration. The maximum release occurred at 37 degrees C in the presence of 0.2 mM Cd2+. The protein composition of Cd2+-induced vesicles was similar to that of the vesicles released from ATP-depleted red cells. Upon incubation with 0.1-0.2 mM Cd2+, more than 90% of the Cd2+ added to the incubation buffer was recovered in ghosts and 15-20% of the ghost Cd2+ was located on the cytoskeletons prepared by washing ghosts with 0.5% Triton X-100 solution containing 0.1 M KCl and 10 mM Tris-HCl (pH 7.4). Moreover, the cytoskeletons prepared from Cd2+-treated ghosts markedly contained cell membrane proteins, bands 2.1, 3, 4.2 and 4.5, and glycophorins. The association of bands 3 and 4.2 with cytoskeletons increased with increasing concentrations of Cd2+ added to the incubation buffer and saturated at 0.2 mM Cd2+. The solubilization of cytoskeletal proteins, bands 1, 2 and 5, from ghosts at low ionic strength was almost completely suppressed by preincubation of ghosts with 0.1 mM Cd2+. HgCl2, PbCl2 and ZnCl2 at 0.2 mM each also produced an increased association of cell membrane proteins with cytoskeletons, whereas CaCl2 and MgCl2 did not.  相似文献   

2.
In the presence of 1.0 mM ATP and MgCl2, the specific viscosity of suspensions of human erythrocyte ghosts decreases 35% in 20 minutes at 22°C. The changes in viscosity are a sensitive index of Mg-ATP dependent shape changes in these membranes. Low concentrations of Ca2+ (1 to 5 μM) inhibit Mg-ATP dependent viscosity changes. If ghosts were preincubated with 1 mM Mg-ATP and 20 μM A23187 to produce a maximal decrease in viscosity, addition of 10 μM Ca2+ to the preincubated ghosts increased the viscosity to levels observed in ghosts preincubated without ATP. Ca2+ (1 to 5 μM) also inhibited Mg2+ dependent phosphorylation 30% and stimulated dephosphorylation 25% in ghost membranes. These effects of Ca2+ on viscosity and phosphorylation may be due to a membrane bound Ca2+ phosphatase activity which dephosphorylates membranes phosphorylated by a Mg2+ dependent kinase activity.  相似文献   

3.
A secretory granular fraction (SG) and a plasma membrane rich fraction (PM) have been isolated from rat parotid gland by differential and Percoll gradient centrifugation. With these two fractions, a cell-free interaction system has been reconstituted to clarify the exocytotic interaction between the secretory granules and plasma membranes, and the conditions of amylase release from SG have been characterized in vitro. The addition of PM into this assay system induced a rapid and transient release of amylase from SG. Some other membranes such as erythrocyte ghosts also mimicked the effect of PM. This release was increased by Ca2+, but was not completely blocked by EGTA. Simultaneous addition of 1 mM ATP with 1 mM MgCl2 (Mg-ATP) in the presence of Ca2+ reduced this release. However, in spite of the existence of Mg-ATP, the stimulation of PM-induced amylase release was caused by Ca2+ in a concentration-dependent manner (10(-7)-10(-3) M). These results suggest that Ca2+ and Mg-ATP should participate as important regulators in the exocytotic interaction between secretory granules and plasma membranes in this system. Furthermore, the differences between our system and intact cells are also discussed.  相似文献   

4.
A detailed study has been made of the permeability characteristics of human erythrocyte ghosts prepared under isoionic conditions by a glycol-induced lysis (Billah, M.M., Finean, J.B., Coleman, R. and Michell, R.H. (1976) Biochim. Biophys. Acta 433, 45-54). Impermeability to large molecules such as dextran (average molecular weight 70 000) was restored immediately and spontaneously after each of the 5-7 lyses that were required to remove all of the haemoglobin. Permeabilities to smaller molecules such as MgATP2-, [3H]inositol and [14C]choline were initially high but could be greatly reduced by incubation at 37 degrees C for an hour. The extent of such resealing decreased as the number of lyses to which the ghosts had been subjected increased. Both removal of haemoglobin and permeabilities to small molecules were affected significantly by pH, CA3+ concentrations and divalent cation chelators. Maximum resealing was achieved in ghosts prepared in the basic ionic medium (130 mM KCl, 10 nM NaCl, 2 mM MgCl2, 10 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid (HEPES)) at pH 7.0 (0 degrees C) and with a calcium level around 10(-5) M. Acidic pH facilitated the removal of haemoglobin whilst the presence of divalent cation chelators showed down its release. Retention of K+ by ghosts leaded with K+ during the first lysis and subsequently incubated at 37 degrees C was substantial but lation chelators slowed down its released. Retention of K+ by ghosts loaded with K+ during the first lysis and subsequently incubated at 37 degrees C was substantial but little K+ could be retained within the haemoglobin-free ghosts. Permeability of the ghosts to K+ after one lysis was affected by temperature, pH, Ca2+ concentrations and by the presence of divalent cation chelators.  相似文献   

5.
In this work, we describe the ability of living hemocytes from an insect (Manduca sexta, Lepidoptera) to hydrolyze extracellular ATP. In these intact cells, there was a low level of ATP hydrolysis in the absence of any divalent metal (8.24 +/- 0.94 nmol of Pi/h x 10(6) cells). The ATP hydrolysis was stimulated by MgCl2 and the Mg2+-dependent ecto-ATPase activity was 15.93 +/- 1.74 nmol of Pi/h x 10(6) cells. Both activities were linear with cell density and with time for at least 90 min. The addition of MgCl2 to extracellular medium increased the ecto-ATPase activity in a dose-dependent manner. At 5 mM ATP, half-maximal stimulation of ATP hydrolysis was obtained with 0.33 mM MgCl2. This stimulatory activity was not observed when Ca2+ replaced Mg2+. The apparent Km values for ATP-4 and Mg-ATP2- were 0.059 and 0.097 mM, respectively. The Mg2+-independent ATPase activity was unaffected by pH in the range between 6.6 and 7.4, in which the cells were viable. However, the Mg2+-dependent ATPase activity was enhanced by an increase of pH. These ecto-ATPase activities were insensitive to inhibitors of other ATPase and phosphatase activities, such as oligomycin, sodium azide, bafilomycin A1, ouabain, furosemide, vanadate, sodium fluoride, tartrate, and levamizole. To confirm the observed hydrolytic activities as those of an ecto-ATPase, we used an impermeant inhibitor, DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid), as well as suramin, an antagonist of P2-purinoreceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg2+-independent and the Mg2+-dependent ATPase activities to different extents. Interestingly, lipopolysaccharide, a component of cell walls of gram-negative bacteria that increase hemocyte aggregation and phagocytosis, increased the Mg2+-dependent ecto-ATPase activity in a dose-dependent manner but did not modify the Mg2+-independent ecto-ATPase activity.  相似文献   

6.
The rate of phosphorylation of the Ca2+-dependent ATPase of sarcoplasmic reticulum vesicles by ITP and ATP was studied using a millisecond mixing and quenching device. The rate of phosphorylation was slower when the vesicles were preincubated in a Ca2+-free medium than when preincubated with Ca2+, regardless of the substrate used and of the pH of the medium. When the vesicles were preincubated with Ca2+ at pH 7.4 an overshoot of phosphorylation was observed in the presence of ITP. The overshoot was abolished when the pH of the medium was decreased to 6.0 or when the vesicles were preincubated in a Ca2+-free medium. Using vesicles preincubated with Ca2+ the apparent Km for ITP found was 2.5 mM at pH 6.0 and 1.0 mM at pH 7.4. The Vmax observed (77 mumol g-1 s-1) did not change with the pH of the medium. Both at pH 6.0 and 7.4 the apparent Km for ATP was 3 microM when preincubated in a Ca2+-free medium. At pH 6.0 the Vmax for ATP varied from 96 to 33 mumol g-1 s-1 depending on whether the vesicles were preincubated in the presence or absence of Ca2+. At pH 7.4 the Vmax for ATP was 90 mumol g-1 s-1 in both conditions. The rate of phosphorylation of the vesicles was dependent on the relative Ca2+ and Mg2+ concentrations of the reaction medium regardless of the substrate used.  相似文献   

7.
An acid-stable phosphoprotein was formed in a microsomal membrane fraction isolated from bovine aortic smooth muscle in the presence of Mg2+ + ATP and Ca2+. The microsomes also showed Ca2+ uptake activity. The Ca2+ dependence of phosphoprotein formation and of Ca2+ uptake occurred over the same range of Ca2+ concentration (1-10 microM), and resembled similar findings from rabbit skeletal microsomes. The molecular weight of the phosphorylated protein, estimated by SDS-gel electrophoresis, was approximately 105,000. The phosphoprotein was labile at alkaline pH, and its decomposition was accelerated by hydroxylamine. Half-maximum incorporation of 32P in the presence of 10 microM Ca2+ occurred at 60 nM ATP. The calcium-dependent phosphoprotein formation was not affected by 5 mM NaN3, but was inhibited in a dose-dependent fashion by ADP with a 50% inhibition occurring at 180 microM. Fifty mM MgCl2 was required for the maximal phosphorylation. The rate of phosphoprotein decomposition after adding 2 mM EGTA was accelerated by varying the Mg2+ concentration from 10 microM to 3 mM. Alkaline pH (9.0) slowed the rate of phosphoprotein decay. Optimal Ca2+-dependent phosphoprotein occurred at 15 degrees C over a broad pH range (6.4 to 9.0). The activation energy of EGTA-induced phosphoprotein decomposition was 25.6 kcal/mol between 0 and 16 degrees C and 14.6 kcal/mol between 16 and 30 degrees C. The phosphoprotein formed by aortic microsomes was thus quite similar to the acid-stable phosphorylated intermediate of the Ca2+-transport ATPase of sarcoplasmic reticulum from skeletal and cardiac muscle. These data suggest that the Ca2+-dependent phosphoprotein is a reaction intermediate of the Ca2+,Mg2+-ATPase of the aortic microsomes.  相似文献   

8.
Properties of phosphatidylinositol kinase activities in rabbit erythrocyte membranes were studied by measuring 32P incorporation into di- and triphosphoinositide from Mg-[gamma-32P]ATP. The Km's for 32P incorporation into di- and triphosphoinositide were 110 and 48 microM ATP, respectively. The optimal temperature for 32P incorporation into diphosphoinositide was at 32 degrees C, whereas the optimum for triphosphoinositide labeling occurred at 43 degrees C. Differences in the effects of pH on the rate of 32P incorporation into di- and triphosphoinositide were also found. At 37 degrees C but not at 25 degrees C 32P-labeled diphosphoinositide was phosphorylated to triphosphoinositide in the presence of Mg-ATP. Triton X-100 partially inhibited 32P incorporation into diphosphoinositide but completely inhibited the synthesis of triphosphoinositide. At physiological concentrations, 0.4 mM MgCl2 half-maximally activated di- and triphosphoinositide synthesis. Higher concentrations of MgCl2 (5 to 50 mM) decreased 32P incorporation into diphosphoinositide and greatly enhanced 32P incorporation into triphosphoinositide. NaCl or KCl (less than or equal to 100 mM) did not have any effects on polyphosphoinositide synthesis, whereas 150 to 300 mM NaCl or KCl decreased synthesis of diphosphoinositide and increased synthesis of triphosphoinositide. Further studies showed that 50 mM MgCl2 and 200 mM NaCl or KCl stimulate kinase-mediated phosphorylation of diphosphoinositide to triphosphoinositide. Triton X-100 inhibited the ability of 50 mM MgCl2 and neomycin to stimulate phosphorylation of diphosphoinositide to triphosphoinositide. The pathways for synthesis of di- and triphosphoinositides in erythrocyte membranes are discussed.  相似文献   

9.
The kinetics and regulatory properties of phosphatidylinositol (PI) kinase were studied in chromaffin granule ghosts isolated from the bovine adrenal medulla. Phosphatidylinositol 4-phosphate (PIP) was the major 32P-labelled phospholipid formed when the isolated membranes were phosphorylated by [gamma-32P]ATP. The PI kinase activity was rather independent of pH, but highly dependent on Mg2+ with a maximal stimulation at 60 mM Mg2+. By contrast, KCl and NaCl had a slight inhibitory effect. The Km value for MgATP was 44 and 62 microM in the presence of 1 and 20 mM MgCl2, respectively. The PI kinase was almost fully and reversibly inhibited by free Ca2+ (calmodulin-independent) in the nanomolar and low micromolar range, depending on the concentration of Mg2+. The inhibition was not dependent on Ca2+-stimulated protein phosphorylation, and it could not be explained by a dephosphorylation of PIP.  相似文献   

10.
The enzymatic properties of purified preparations of chicken liver and chicken skeletal muscle fructose bisphosphatases (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) were compared. Both enzymes have an absolute requirement for Mg2+ or Mn2+. The apparent Km for MgCl2 at pH 7.5 was 0.5 mM for the muscle enzyme and 5 mM for the liver enzyme. Fructose bisphosphate inhibited both enzymes. At pH 7.5, the inhibitor constants (Ki) were 0.18 and 1.3 mM for muscle and liver fructose bisphosphatases, respectively. The muscle enzyme was considerably more sensitive to AMP inhibition than the liver enzyme. At pH 7.5 and in the presence of 1 mM MgCl2, 50% inhibition of muscle and liver fructose bisphosphatases occurred at AMP concentrations of 7 X 10(-9) and 1 X 10(-6) M, respectively. EDTA activated both enzymes. The degree of activation was time and concentration dependent. The degree of EDTA activation of both enzymes decreased with increasing MgCl2 concentration. Ca2+ was a potent inhibitor of both liver (Ki, 1 X 10(-4) M) and muscle (Ki, 1 X 10(-5) M) fructose bisphosphatase. This inhibition was reversed by the presence of EDTA. Ca2+ appears to be a competitive inhibitor with regard to Mg2+. There is, however, a positive homeotropic interaction among Mg2+ sites of both enzymes in the presence of Ca2+.  相似文献   

11.
The properties of the enzymes involved in Ca2+-stimulated breakdown of phosphatidylinositol 4'-phosphate (PIP), phosphatidylinositol 4',5'-bisphosphate (PIP2), and phosphatidic acid (PA) in rabbit erythrocyte ghosts were studied. At 25 degrees C, 1 to 180 microM Ca2+ rapidly stimulated the breakdown of PIP and PIP2, and maximal breakdown occurred within 10 minutes at all Ca2+ concentrations. The rate and the total amount of breakdown of PA, PIP, and PIP2 increased with Ca2+ concentration. MgCl2 inhibited the rate of Ca2+-stimulated breakdown of PIP and PIP2 at Ca2+ concentrations less than 10 microM, but did not have any appreciable effects at higher Ca2+ concentrations. MgCl2 also protected against Ca2+-stimulated breakdown of PA. In the presence and absence of 5 mM MgCl2, Ca2+ stimulated half-maximal breakdown of PIP and PIP2 at 2-3 microM under hypotonic and isotonic conditions. In the presence of 5 mM MgCl2, Ca2+-stimulated breakdown of PIP and PIP2 was associated with the release of Pi and inositol bisphosphate. In the absence of MgCl2, Ca2+ stimulated the release of 32P-labeled Pi, inositol bisphosphate, and inositol trisphosphate from labeled PIP, PIP2, and PA. Ca2+ increased phosphatidylinositol content and decreased PIP and PIP2 content in these membranes. The results of this investigation suggest that Ca2+ stimulates the breakdown of polyphosphoinositides by stimulating polyphosphoinositide phosphomonoesterase and phosphodiesterase activities in rabbit erythrocyte ghosts. These activities were activated by less than 3 microM Ca2+ in the presence of MgCl2 under hypotonic or isotonic conditions. These Ca2+-stimulated polyphosphoinositide phosphoesterase activities could therefore be active under physiological conditions in normal rabbit erythrocytes.  相似文献   

12.
ESR spectra were recorded from rat epididymal adipocyte ghosts labeled with the 5-nitroxide stearic acid spin probe, I(12,3). Polarity-corrected and approximate order parameters, that are sensitive to the flexibility of the incorporated label, were used to evaluate the membrane lipid fluidity. Addition of CaCl2 a 37 degrees C decreased the fluidity, as indicated by positive increases in the order parameters. The ordering effect of Ca2+ was concentration-dependent, reached saturation at approx. 3--4 mM, and was completely reversed by excess EGTA. Previous studies indicated that low- and high-affinity sites on adipocyte plasma membranes are able to bind 45Ca2+, and our results suggest that Ca2+-induced alterations in the lipid fluidity involve cation binding to low-affinity sites. The cellular movements of Ca2+ and, in particular, the binding of Ca2+ to the plasma membrane may play important roles in insulin's action on fat cell function. The possibility that insulin directly alters the membrane fluidity was tested by adding hormone to freshly-prepared I(12,3)-labeled adipocyte ghosts. Insulin, at concentrations (10(-6) M) that enhance glucose uptake into intact adipocytes, did not affect the fluidity of ghosts suspended in buffers with or without Ca2+. The fluidities of I(12,3)-labeled rat adipocyte ghosts or human erythrocyte ghosts were also unaffected by various forms of human growth hormone.  相似文献   

13.
Bass gill microsomal preparations contain both a Na+, K+ and Mg2+-dependent ATPase, which is completely inhibited by 10(-3)M ouabain and 10(-2)M Ca2+, and also a ouabain insensitive ATP-ase activity in the presence of both Mg2+ and Na+. Under the optimal conditions of pH 6.5, 100 mM Na+, 20 mM K+, 5 mM ATP and 5 mM Mg2+, (Na+ + K+)-ATPase activity at 30 degrees C is 15.6 mumole Pi hr/mg protein. Bass gill (Na+ + K+)-ATPase is similar to other (Na+ + K+)-ATPases with respect to the sensitivity to ionic strength, Ca2+ and ouabain and to both Na+/K+ and Mg2+/ATP optimal ratios, while pH optimum is lower than poikilotherm data. The enzyme requires Na+, whereas K+ can be replaced efficiently by NH+4 and poorly by Li+. Both Km and Vm values decrease in the series NH+4 greater than K+ greater than Li+. The break of Arrhenius plot at 17.7 degrees C is close to the adaptation temperature. Activation energies are scarcely different from each other and both lower than those generally reported. The Km for Na+ poorly decreases as the assay temperature lowers. The comparison with literature data aims at distinguishing between distinctive and common features of bass gill (Na+ + K+)-ATPase.  相似文献   

14.
We have studied the kinetics of the gelation process that occurs upon warming cold extracts of Acanthamoeba using a low-shear falling ball assay. We find that the reaction has at least two steps, requires 0.5 mM ATP and 1.5 mM MgCl2, and is inhibited by micromolar Ca++. The optimum pH is 7.0 and temperature, 25 degrees-30 degrees C. The rate of the reaction is increased by cold preincubation with both MgCl2 and ATP. Nonhydrolyzable analogues of ATP will not substitute for ATP either in this "potentiation reaction" or in the gelation process. Either of two purified or any one of four partially purified Acanthamoeba proteins will cross-link purified actin to form a gel, but none can account for the dependence of the reaction in the crude extract on Mg-ATP or its regulation by Ca++. This suggests that the extract contains, in addition to actin-cross-linking proteins, factors dependent on Mg-ATP and Ca++ that regulate the gelation process.  相似文献   

15.
The microsomal fraction of frog sciatic nerves was found to contain Ca2+- or Mg2+-dependent hydrolytic activity toward different nucleoside di- and triphosphates. In the presence of Ca2+ substrate specificity was in the order CTP > UTP > GTP > ATP. When Mg2+ was used, the triphosphates were approximately equally good substrates. ATP hydrolytic activity was very similar with Ca2+ or Mg2+ as the cofactor, whereas Ca2+ was the more potent activator of hydrolysis of the other triphosphates tested. The preparation showed some activity toward the nucleoside diphosphates but none toward the monophosphates or p-nitrophenylphosphate. The enzymic properties of ATP hydrolysis were more closely studied. The hydrolysis was optimal at 18--24 degrees C in the presence of 1 mM-Ca2+ or 1 mM-Mg2+. Ca2+- and Mg2+-ATP hydrolysis displayed pH maxima around 8.0--8.5 and 7.4--8.0, respectively. Vmax values for Ca2+- and Mg2+-ATP hydrolysis similar: approx. 12 mumol Pi per h per mg protein with a Km value of approx. 0.05 mM. The ATP hydrolysis activity was inhibited by NaF but unaffected by ouabain, vanadate, cytochalasin B, and various drugs known to influence ATPase activity of mitochondria. Zn2+ stimulated the ATP hydrolysis activity at low concentrations (10(-6)-10(-5) M) and inhibited it at higher concentrations. The possibility that these observations account for stimulation and inhibition of axonal transport in frog sciatic nerves exposed to similar concentrations of Zn2+ is discussed.  相似文献   

16.
Intracellular ATP has been reported either to stimulate [Jacquez, J.A. (1983) Biochim. Biophys. Acta 727, 367-378] or to inhibit [Hebert, D. N., & Carruthers, A. (1986) J. Biol. Chem. 261, 10093-10099] human erythrocyte sugar transport. This current study provides a rational explanation for these divergent findings. Protein-mediated 3-O-methyl-alpha-D-glucopyranoside (3OMG) uptake by intact human red blood cells (lacking intracellular sugar) at ice temperature in isotonic KCl containing 2 mM MgCl2, 2 mM EGTA, and 5 mM Tris-HCl, pH 7.4 (KCl medium), is characterized by a Km(app) of 0.4 +/- 0.1 mM and a Vmax of 114 +/- 20 mumol L-1 min-1. Lysis of red cells in 40 volumes of EGTA-containing hypotonic medium and resealing in 10 volumes of KCl medium increase the Km(app) and Vmax for uptake to 7.1 +/- 1.8 mM and 841 +/- 191 mumol L-1 min-1, respectively. Addition of ATP (4 mM) to the resealing medium restores Michaelis and velocity constants for zero-trans 3OMG uptake to 0.42 +/- 0.11 mM and 110 +/- 15 mumol L-1 min-1, respectively. Addition of CaCl2 to extracellular KCl medium (calculated [Ca2+]o = 101 microM) reduces the Vmax for zero-trans 3OMG uptake in intact cells and ATP-containing ghosts by 79 +/- 4% and 61 +/- 9%, respectively. Intracellular Ca2+ (15 microM) reduces the Vmax for 3OMG uptake by ATP-containing ghosts by 38 +/- 12%. In nominally ATP-free ghosts, extracellular (101 microM) and intracellular (11 microM) Ca2+ reduce the Vmax for 3OMG uptake by 96 and 94%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
J R Petithory  W P Jencks 《Biochemistry》1988,27(23):8626-8635
The binding of Ca2+ and the resulting change in catalytic specificity that allows phosphorylation of the calcium ATPase of sarcoplasmic reticulum by ATP were examined by measuring the amount of phosphoenzyme formation from [32P]ATP, or 45Ca incorporation into vesicles, after the simultaneous addition of ATP and EGTA at different times after mixing enzyme and Ca2+ (25 degrees C, pH 7.0, 5 mM MgSO4, 0.1 M KCl). A "burst" of calcium binding in the presence of high [Ca2+] gives approximately 12% phosphorylation and internalization of two Ca2+ at very short times after the addition of Ca2+ with this assay. This shows that calcium binding sites are available on the cytoplasmic-facing side of the free enzyme. Calcium binding to these sites induces the formation of cE.Ca2, the stable high-affinity form of the enzyme, with k = 40 s-1 at saturating [Ca2+] and a half-maximal rate at approximately 20 microM Ca2+ (from Kdiss = 7.4 X 10(-7) M for Ca.EGTA). The formation of cE.Ca2 through a "high-affinity" pathway can be described by the scheme E 1 in equilibrium cE.Ca1 2 in equilibrium cE.Ca2, with k1 = 3 X 10(6) M-1 s-1, k2 = 4.3 X 10(7) M-1 s-1, k-1 = 30 s-1, k-2 = 60 s-1, K1 = 9 X 10(-6) M, and K2 = 1.4 X 10(-6) M. The approach to equilibrium from E and 3.2 microM Ca2+ follows kobsd = kf + kr = 18 s-1 and gives kf = kr = 9 s-1. The rate of exchange of 45Ca into the inner position of cE.Ca2 shows an induction period and is not faster than the approach to equilibrium starting with E and 45Ca. The dissociation of 45Ca from the inner position of cE.45Ca.Ca in the presence of 3.2 microM Ca2+ occurs with a rate constant of 7 s-1. These results are inconsistent with a slow conformational change of free E to give cE, followed by rapid binding-dissociation of Ca2+.  相似文献   

18.
The activation characteristics of Mg-ATP and Ca2+ on cardiac and skeletal muscle myofibril ATPase activity were studied in rats following a run to exhaustion. In addition, the effect of varying ionic strength was determined on skeletal muscle from exhausted animals. The exhausted group (E) ran at a speed of 25 m min-1 with an 8% incline. Myofibril ATPase activities for control (C) and E were determined with 1, 3 and 5 mM Mg-ATP and 1 and 10 microM Ca2+ at pH 7.0 and 30 degrees C. For control skeletal muscle, at 1 and 10 microM Ca2+, there was an increase in ATPase activity from 1 to 5 mM Mg-ATP (P less than 0.05). For E animals the myofibril ATPase activities at 10 microM Ca2+ and all Mg-ATP concentrations were similar to C (P greater than 0.05). At 1.0 microM Ca2+ and all Mg-ATP concentrations were similar to C (P greater than 0.05). At 1.0 microM Ca2+ the activities at 3 and 5 mM Mg-ATP were greater for the E animals (P less than 0.05). Increasing KCl concentrations resulted in greater inhibition for E animals. With cardiac muscle, the myofibril ATPase activities at 1.0 microM free Ca2+ were lower for E at all Mg-ATP levels (P less than 0.05). In contrast, at 10 microM Ca2+, the E group exhibited an elevated myofibril ATPase activity. The results indicate that Mg-ATP and Ca2+ activation of cardiac and skeletal muscle myofibril ATPase is altered with exhaustive exercise.  相似文献   

19.
Intact human erythrocytes, initially depleted of Mg2+ by EDTA incubation in the presence of A23187, exhibit Mg(2+)-dependent phosphate production of around 1.5 mmol per liter cells.h, half-maximally activated at around 0.4 mM added free Mg2+. This appears to correspond to Mg(2+)-stimulated adenosine triphosphatase (Mg(2+)-ATPase) activity found in isolated membranes, which is known to have a similar activity and affinity for Mg2+. Vanadate (up to 100 microM) inhibited Mg(2+)-dependent phosphate production and ATP breakdown in intact cells. Over a similar concentration range vanadate (3-100 microM) transformed intact cells from normal discocytes to echinocytes within 4-8 h at 37 degrees C, and more rapidly in Mg(2+)-depleted cells. The rate of Ca(2+)-induced echinocytosis was also enhanced in Mg(2+)-depleted cells. These results support previous studies in erythrocyte ghosts suggesting that vanadate-induced shape change is associated with inhibition of Mg(2+)-ATPase activity localized in the plasma membrane of the red blood cell.  相似文献   

20.
The amount of Ca2+ bound to the Ca2+,Mg2+-dependent ATPase of deoxycholic acid-treated sarcoplasmic reticulum was measured during ATP hydrolysis by the double-membrane filtration method [Yamaguchi, M. & Tonomura, Y. (1979), J. Biochem. 86, 509--523]. The maximal amount of phosphorylated intermediate (EP) was adopted as the amount of active site of the ATPase. In the absence of ATP, 2 mol of Ca2+ bound cooperatively to 1 mol of active site with high affinity and were removed rapidly by addition of EGTA. AMPPNP did not affect the Ca2+ binding to the ATPase in the presence of MgCl2. Under the conditions where most EP and ADP sensitive at steady state (58 microM Ca2+, 50 microM EGTA, and 20 mM MgCl2 at pH 7.0 and 0 degrees C), bound Ca2+ increased by 0.6--0.7 mol per mol active site upon addition of ATP. The time course of decrease in the amount of bound 45Ca2+ on addition of unlabeled Ca2+ + EGTA was biphasic, and 70% of bound 45Ca2+ was slowly displaced with a rate constant similar to that of EP decomposition. Similar results were obtained for the enzyme treated with N-ethylmaleimide, which inhibits the step of conversion of ADP-sensitive EP to the ADP-insensitive one. Under the conditions where most EP was ADP insensitive at steady state (58 microM Ca2+, 30 microM EGTA, and 20 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ increased slightly, then decreased slowly by 1 mol per mol of EP formed after addition of ATP. Under the conditions where about a half of EP was ADP sensitive (58 microM Ca2+, 25 microM EGTA, and 1 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ did not change upon addition of ATP. These findings suggest that the Ca2+ bound to the enzyme becomes unremovable by EGTA upon formation of ADP-sensitive EP and is released upon its conversion to ADP-insensitive EP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号