首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aqualysin I is a subtilisin-type serine protease which is secreted into the culture medium by Thermus aquaticus YT-1, an extremely thermophilic Gram-negative bacterium. The nucleotide sequence of the entire gene for aqualysin I was determined, and the deduced amino acid sequence suggests that aqualysin I is produced as a large precursor, consisting of at least three portions, an NH2-terminal pre-pro-sequence (127 amino acid residues), the protease (281 residues), and a COOH-terminal pro-sequence (105 residues). When the cloned gene was expressed in Escherichia coli cells, aqualysin I was not secreted. However, a precursor of aqualysin I lacking the NH2-terminal pre-pro-sequence (38-kDa protein) accumulated in the membrane fraction. On treatment of the membrane fraction at 65 degrees C, enzymatically active aqualysin I (28-kDa protein) was produced in the soluble fraction. When the active site Ser residue was replaced with Ala, cells expressing the mutant gene accumulated a 48-kDa protein in the outer membrane fraction. The 48-kDa protein lacked the NH2-terminal 14 amino acid residues of the precursor, and heat treatment did not cause any subsequent processing of this precursor. These results indicate that the NH2-terminal signal sequence is cleaved off by a signal peptidase of E. coli, and that the NH2- and COOH-terminal pro-sequences are removed through the proteolytic activity of aqualysin I itself, in that order. These findings indicate a unique four-domain structure for the aqualysin I precursor; the signal sequence, the NH2-terminal pro-sequence, mature aqualysin I, and the COOH-terminal pro-sequence, from the NH2 to the COOH terminus.  相似文献   

2.
Aqualysin I is a subtilisin-type serine protease secreted into the medium by Thermus aquaticus YT-1. Thermus thermophilus cells harboring a plasmid for the aqualysin I precursor secreted pro-aqualysin I with the C-terminal pro-sequence into the culture medium, and the precursor was then processed to the mature enzyme during the cultivation. However, the extracellular levels of aqualysin I in T. thermophilus cells harboring plasmids for deletion mutants as to the C-terminal pro-sequence were about 10–20% in comparison with the level of wild-type. Only the mature enzyme could be detected in the medium, while pro-aqualysin I with the C-terminal pro-sequence could not. These results suggest that the C-terminal pro-sequence of aqualysin I plays an important role in the extracellular secretion of aqualysin I.  相似文献   

3.
The precursor of aqualysin I, an extracellular subtilisin-type protease produced by Thermus aquaticus, consists of four domains: an N-terminal signal peptide, an N-terminal pro-sequence, a protease domain, and a C-terminal extended sequence. In an Escherichia coli expression system for the aqualysin I gene, a 38 kDa precursor protein consisting of the protease domain and the C-terminal extended sequence is accumulated in the membrane fraction and processed to a 28 kDa mature enzyme upon heat treatment at 65°C. The 38 kDa precursor protein is separated as a soluble form from denatured E. coli proteins after heat treatment. Accordingly, purification of the 38 kDa proaqualysin I was performed using chromatography. The purified precursor protein gave a single band on SDS-polyacrylamide gels. The precursor protein exhibited proteolytic activity comparable to that of the mature enzyme. The purified precursor protein was processed to the mature enzyme upon heat treatment. The processing was inhibited by diisopropyl fluorophosphate. The processing rate increased upon either the addition of mature aqualysin I or upon an increase in the concentration of the precursor, suggesting that the cleavage of the C-terminal extended sequence occurs through an intermolecular self-processing mechanism.  相似文献   

4.
Aqualysin I is an alkaline serine protease which is secreted into the culture medium by Thermus aquaticus YT-1, an extreme thermophile [Matsuzawa, H., Hamaoki, M. & Ohta, T. (1983) Agric. Biol. Chem. 47, 25-28]. The gene encoding aqualysin I was cloned into Escherichia coli using synthetic oligodeoxyribonucleotides as hybridization probes. The nucleotide sequence of the cloned DNA was determined. The primary structure of aqualysin I, deduced from the nucleotide sequence, agreed with the NH2-terminal sequence previously reported and the determined amino acid sequences, including the COOH-terminal sequence, of the tryptic peptides derived from aqualysin I. Aqualysin I comprised 281 amino acid residues and its molecular mass was determined to be 28,350. On alignment of the whole amino acid sequence, aqualysin I showed high sequence homology with the subtilisin-type serine proteases, and 43% identity with proteinase K, 37-39% with subtilisins and 34% with thermitase. Extremely high sequence identity was observed in the regions containing the active-site residues, corresponding to Asp32, His64 and Ser221 of subtilisin BPN'. The nucleotide sequence of the cloned DNA (1105 nucleotides) revealed that it contains the entire gene encoding aqualysin I and one open reading frame without a translational stop codon. Therefore, aqualysin I was considered to be produced as a large precursor, which contains a NH2-terminal portion, the protease and a COOH-terminal portion. The G + C content of the coding region for aqualysin I was 64.6%, which is lower than those of other Thermus genes (68-74%). The codon usage in the aqualysin I gene was rather random in comparison with that in other Thermus genes.  相似文献   

5.
Aqualysin I is the alkaline serine protease isolated from an extreme thermophile, Thermus aquaticus YT-1. We have analyzed the kinetic properties of aqualysin I, using thirty-one kinds of chromogenic succinyl-tripeptide p-nitroanilides as substrates in the presence of 10% dimethylsulfoxide (DMSO). Aqualysin I hydrolyzed many peptides in a DMSO-containing mixture, however the substrate specificity was different from that in the absence of DMSO. The Km for each peptide was raised by the addition of 10% DMSO. Also, the P3- as well as P2-specificity of aqualysin I was altered. These results suggested that the side chains of the P2 and P3 residues are exposed to the solvent, and the hydrophobic interactions between the side chain of the substrate and the solvent may take a part in the substrate recognition of the enzyme.  相似文献   

6.
The precursor of aqualysin I, an extracellular protease produced by Thermus aquaticus, consists of four domains: an N-terminal signal peptide, an N-terminal pro-sequence, the protease domain and a C-terminal pro-sequence. In an Escherichia coli expression system, mature and active aqualysin I is formed by treatment at 65 degrees C and the N-pro-sequence is required for its production. Complete deletion of the C-pro-sequence did not affect the production of active aqualysin I, indicating that the C-pro-sequence is not essential. A non-covalent N-pro-region was separately synthesized from the protease domain with or without the C-pro-sequence. In this system, mature and active aqualysin I was detected only when the C-pro-sequence was deleted.  相似文献   

7.
An expression system for aqualysin I from Thermus aquaticus YT-1, a thermophilic serine protease belonging to the proteinase K family, in Escherichia coli is available, but the efficiency of production has been rather low for detailed analysis of the product. We developed a maltose biding protein (MBP)-fused proaqualysin I expression plasmid (pMAQ-c2Δ) in which MBP is attached to the N-terminus of proaqualysin I. MBP appeared effectively to suppress the folding-promoting activity of the N-terminal propeptide when the bacteria were grown at 30 °C, leading to a massive accumulation of fusion aqualysin I precursor. The precursor was converted efficiently to mature aqualysin I by heat treatment at 70 °C, enabling us to obtain 40 times more aqualysin I than is available using expression systems such as pAQNΔC105. By analyzing the product of the pMAQ-c2Δ-derived inactive mutant expression vector, pMAQ-S222A, it was confirmed that aqualysin I was initially expressed as a whole fusion protein and then processed autocatalytically.  相似文献   

8.
Aqualysin I is an alkaline serine protease which is secreted into the culture medium by Thermus aquaticus YT-1. Aqualysin I was purified, and its apparent relative molecular mass was determined to be 28 500. The enzyme contained four Cys residues (probably as two cystines), and its amino acids composition was similar to those of cysteine-containing serine proteases (proteinase K, etc.) as well as those of subtilisins. The NH2-terminal sequence of aqualysin I showed homology with those of the microbial serine proteases. The optimum pH for the proteolytic activity of aqualysin I was around 10.0. Ca2+ stabilized the enzyme to heat treatment, and the maximum proteolytic activity was observed at 80 degrees C. Aqualysin I was stable to denaturing reagents (7 M urea, 6 M guanidine.HCl and 1% SDS) at 23 degrees C for 24 h. The enzyme hydrolyzed the ester bond of an alanine ester and succinyl-Ala-Ala-Ala p-nitroanilide, a synthetic substrate for mammalian elastase. The cleavage sites for aqualysin I in oxidized insulin B chain were not specific when it was digested completely.  相似文献   

9.
Aqualysin I is a heat-stable alkaline serine protease produced by Thermus aquaticus YT-1. Aqualysin I comprises 281 amino acid residues and contains four cysteine residues. The cysteine residues seemed to form disulfide bonds in the molecule. Thus, the positions of the disulfide bonds were investigated. Disulfide bond-containing peptides were identified by peptide mapping with HPLC before and after carboxymethylation of chymotryptic peptides of aqualysin I. The disulfide bond-containing peptides were isolated and then carboxymethylated. Carboxymethylcysteine-containing peptides were purified, and their amino acid compositions and sequences were determined. Based on the data obtained and the primary structure of aqualysin I, it was concluded that two disulfide bonds were formed between Cys67 and Cys99, and between Cys163 and Cys194.  相似文献   

10.
Aqualysin I is synthesized as a large precursor, processed, and secreted into the culture medium by Thermus aquaticus YT-1. An expression plasmid for the aqualysin I gene in T. thermophilus HB27 was constructed. T. thermophilus cells harboring the recombinant plasmid produced correctly processed aqualysin I, and the mature enzyme was secreted into the culture medium.  相似文献   

11.
12.
We characterized the heat stability and detergent stabilities of aqualysin I, produced by Thermus aquaticus YT-1, and compared them with those of fungal proteinase K and Bacillus subtilisin.

Aqualysin I displayed excellent heat and detergent stabilities. Proteinase K, another Cys-containing enzyme, was less stable than aqualysin I. All these enzymes maintained activities in the presence of urea or Tween-20.  相似文献   

13.
A genomic clone encoding mature karasurin-A (KRNA), a ribosome-inactivating protein from Trichosanthes kirilowii var. japonica, was efficiently expressed in E. coli using an expression cassette vector pMAL-c2. The resultant recombinant KRNA fused with maltose-binding protein (MBP) was recovered from the soluble fraction of the bacterial cells and purified to near homogeneity after one round of the affinity chromatography. Neither the karasurin precursor retaining both N- and C-terminal peptides, nor the protein with the N-terminal peptide was successufully produced even as a MBP-fusion. The protein with its C-terminal peptide was over-produced but was recovered in an insoluble fraction. Both the recombinant MBP-KRNA fusion protein and recombinant KRNA with MBP removed were as active as the native KRNA from root tubers. The immunogenicity of the recombinant KRNA was also unaffected by fusion with MBP.  相似文献   

14.
The haemolysin of Serratia marcescens (ShlA) is translocated through the cytoplasmic membrane by the signal peptide-dependent export apparatus. Translocation across the outer membrane (secretion) is mediated by the ShIB protein. Only the secreted form of ShlA is haemolytic. ShIB also converts in vitro inactive ShlA (ShlA*), synthesized in the absence of ShIB, into the haemolytic form (a process termed activation). To define regions in ShlA involved in both processes, ShlA derivatives were isolated and tested for secretion and activation. Analysis of C-terminally truncated proteins (ShlA) assigned the secretion signal to the amino-terminal 238 residues of ShlA. Trypsin cleavage of a secreted ShlA' derivative yielded a 15kDa N-terminal fragment, by which a haemolytically inactive ShlA* protein could be activated in vitro. It is suggested that the haemolysin activation site is located in this N-terminal fragment. Replacement of asparagine-69 and asparagine-109 by isoleucine yielded inactive haemolysin derivatives. Both asparagine residues are part of two short sequence motifs, reading Ala-Asn-Pro-Asn, which are critical to both activation and secretion. These point mutants as well as N-terminal deletion derivatives which were not activated by ShIB were activated by adding a non-haemolytic N-terminal fragment synthesized in an ShIB+ strain (complementation). Apparently the activated N-terminal fragment substituted for the missing activation of the ShlA derivatives and directed them into the erythrocyte membrane, where they formed pores. It is concluded that activation is only required for initiation of pore formation, and that in vivo activation and secretion are tightly coupled processes. Complementation may also indicate that haemolysin oligomers form the pores.  相似文献   

15.
Karasurin-A, from root tubers of Trichosanthes kirilowii var. japonica, is a type I ribosome-inactivating protein (RIP) that displays activity of RNA N-glycosidase to remove an adenine in the conserved sarcin/ricin loop of the largest RNA in the ribosome. We expressed recombinant proteins of karasurin-A and its various mutants with N- or C-terminal deletions in Escherichia coli as fusion proteins with maltose-binding protein (MBP), and compared their enzymatic activities and antigenicities. Muteins of karasurin-A generated by deleting either the first 100 N-terminal or the last 30 C-terminal amino acid residues lost activity of RNA N-glycosidase. The mutant proteins whose 80 N-terminal or 20 C-terminal amino acids were deleted could depurinate rRNA although the activities were decreased drastically. The antigenicities of the recombinant proteins were considerably reduced by deleting 20 amino acid residues from either N- or C-terminal regions.Revisions requested 30 September 2004; Revisions received 22 October 2004  相似文献   

16.
SUP35is an omnipotent suppressor gene of Saccharomyces cerevisiae coding for a protein consisting of a C-terminal part similar to the elongation factor EF-1α and a unique N-terminal sequence of 253 amino acids. Twelve truncated versions of the SUP35 gene were generated by the deletion of fragments internal to the coding sequence. Functional studies of these deletion mutants showed that: (i) only the EF-1α-like C-terminal part of the Sup35 protein is essential for the cell viability; (ii) overexpression of either the N-terminal part of the Sup35 protein or the full-length Sup35 protein decreases translational fidelity, resulting in omnipotent suppression and reduced growth of [psi+] strains; (iii) expression of the C-terminal part of the Sup35 protein generates an antisuppressor phenotype; and (iv) both the N- or C-terminal segments of the Sup35 protein can bind to 80S ribosomes. Thus, the data obtained define two domains within the Sup35 protein which are responsible for different functions.  相似文献   

17.
Aqualysin I is a bacterial subtilisin-related alkaline serine protease, originating in Thermus aquaticus YT-1. Based on computational analysis, we predicted that two residues, Ser102 and Gly131, form the S3 site of aqualysin I, and we proved that this prediction by site-directed mutagenesis. To alter the P3-specificity of the enzyme, we built a "wall" on the S3 site edge by introducing a bulky side chain at target sites. Six mutant proteins were prepared: S102H, S102K, S102E, G131H, G131K, and G131D. The mutant enzymes were examined with two kinetically typical peptides for aqualysin I, suc-X-Ala-Ala-pNA, where X is Ala or Phe. All mutations reduced the efficiency for the Phe-containing peptide, while they raised the k(cat) values for the Ala-containing peptide. Especially, the S102K mutant protein hydrolyzed the polyalanine peptide efficiently. The strategies we have adopted in this paper are applicable to all subtilisin-related enzymes.  相似文献   

18.
Two variants of d-hydantoinase (HYD), created by deletion of one amino acid residue of at either the N- or C-terminus, were expressed in Escherichia coli and purified by two-step chromatography. Compared with HYD, HYDc1 with the C-terminal Arg deletion retained 43% activity, while HYDn1 with the N-terminal Ser deletion had no activity using dl-Hydantoin as substrate. Based on HYD dimer with a molecular weight of 103 kDa, HYDc1 is a monomer of 52 kDa and HYDn1 is a mixture of dimer and monomer. Moreover, HYDc1 displayed higher pH stability and lower thermal stability compared to HYD. In addition, the secondary and tertiary structures of HYDc1 were not significantly changed in contrast to the ones of HYDn1. All data imply that the C-terminal Arg of the HYD is crucial for homodimeric architecture of the enzyme, but non-essential for catalysis, while the N-terminal Ser is required for both conformation and catalysis of the enzyme.  相似文献   

19.
The effect of the removal of signal peptides after cleavage of precursor molecules by the signal peptidase I was examined in an in vitro translocation system with Escherichia coli membrane vesicles. The translocation of periplasmic alkaline phosphatase precursors was significantly inhibited by the protease inhibitors antipain, elastatinal and leupeptin. Antipain and leupeptin enhanced the translocation of precursors of outer membrane protein OmpA, but inhibited the processing. However, antipain did not inhibit the processing of precursors mediated by signal peptidase I in the soluble form. Moreover, the inhibition by antipain was not due to the disruption of membrane integrity, but occurred during the process of protein translocation. Since these small peptide inhibitors are known to inhibit membrane protease IV, a signal peptide peptidase, these results suggest that the hydrolysis of signal peptides is an important step in the recycles of the overall translocation process, and that the prevention of degradation of signal peptides feedback inhibits the preceding steps in the translocation pathway.Dedicated to John L. Ingraham on the occasion of his retirement; his approaches and enthusiasm for science remain an inspiration to PCT, who has been guided by his motto, Science should be fun, for the last twenty years  相似文献   

20.
 The DNA sequence encoding Thermus protease aqualysin I was inserted downstream from a bacteriophage T7 promoter in an expression vector. In the T7 expression system, using a strain lacking an F′ episome, aqualysin I was produced in soluble form without chemical induction. The deletions of part (30 amino acid residues) or all (105 residues) of the C-terminal pro-sequence from the C terminus significantly affected both cellular growth and the production of the enzyme. Complete deletion adversely affected both. In contrast, the 30-residue deletion markedly improved productivity by approximately four times compared to non-deletion, and shortened the time needed for the activation of a precursor to active enzyme. The concentration of inducer isopropyl β-D-thiogalactopyrano-side (IPTG) was varied to examine its effects, and it was found that a low concentration of IPTG improved aqualysin I production. To avoid the inhibitory effects of acetic acid accumulation in the culture medium, the use of other carbon sources besides glucose was examined. When cells were cultivated with glycerol, the acetic acid level remained relatively low, and both good cellular growth and a high level of production were attained. The aqualysin I productivity for a fed-batch culture using two carbon sources, glucose and glycerol, reached more than 150 kU/ml enzymatically active aqualysin I. Received: 19 May 1995/Received revision: 28 July 1995/Accepted: 22 August 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号