首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial biofilms impair the operation of many industrial processes. Deinococcus geothermalis is efficient primary biofilm former in paper machine water, functioning as an adhesion platform for secondary biofilm bacteria. It produces thick biofilms on various abiotic surfaces, but the mechanism of attachment is not known. High-resolution field-emission scanning electron microscopy and atomic force microscopy (AFM) showed peritrichous adhesion threads mediating the attachment of D. geothermalis E50051 to stainless steel and glass surfaces and cell-to-cell attachment, irrespective of the growth medium. Extensive slime matrix was absent from the D. geothermalis E50051 biofilms. AFM of the attached cells revealed regions on the cell surface with different topography, viscoelasticity, and adhesiveness, possibly representing different surface layers that were patchily exposed. We used oscillating probe techniques to keep the tip-biofilm interactions as small as possible. In spite of this, AFM imaging of living D. geothermalis E50051 biofilms in water resulted in repositioning but not in detachment of the surface-attached cells. The irreversibly attached cells did not detach when pushed with a glass capillary but escaped the mechanical force by sliding along the surface. Air drying eliminated the flexibility of attachment, but it resumed after reimmersion in water. Biofilms were evaluated for their strength of attachment. D. geothermalis E50051 persisted 1 h of washing with 0.2% NaOH or 0.5% sodium dodecyl sulfate, in contrast to biofilms of Burkholderia cepacia F28L1 or the well-characterized biofilm former Staphylococcus epidermidis O-47. Deinococcus radiodurans strain DSM 20539(T) also formed tenacious biofilms. This paper shows that D. geothermalis has firm but laterally slippery attachment not reported before for a nonmotile species.  相似文献   

2.
Type IV pili are an efficient and versatile device for bacterial surface motility. They are widespread among the beta-, gamma-, and delta-proteobacteria and the cyanobacteria. Within that diversity, there is a core of conserved proteins that includes the pilin (PilA), the motors PilB and PilT, and various components of pilus biogenesis and assembly, PilC, PilD, PilM, PilN, PilO, PilP, and PilQ. Progress has been made in understanding the motor and the secretory functions. PilT is a motor protein that catalyzes pilus retraction; PilB may play a similar role in pilus extension. Type IV pili are multifunctional complexes that can act as bacterial virulence factors because pilus-based motility is used to spread pathogens over the surface of a tissue, or to build multicellular structures such as biofilms and fruiting bodies.  相似文献   

3.
Enteropathogenic Escherichia coli (EPEC) is a causative agent of diarrhoea in humans. Localized adherence of EPEC onto intestinal mucosa was reproduced in an in vitro adherence assay with cultured human epithelial cells. We found that the efficiency of EPEC adherence to a mouse-derived colonic epithelial cell line, CMT-93, was remarkably lower than its adherence to human-derived intestinal cell lines, such as Intestine-407 or Caco-2. Although EPEC did adhere to some cell lines derived from non-human species, fixing the cells with formalin to inactivate one or more formalin-sensitive factors allowed us to observe species-specific differences in EPEC adherence. In contrast to these results, an EPEC mutant that is defective in bundle-forming pili (BFP) production adhered as efficiently to CMT-93 cells as to Caco-2 cells. Furthermore, Citrobacter rodentium expressing BFP adhered to Caco-2 cells much more efficiently than to CMT-93 cells. Finally, a purified BfpA-His6 fusion protein showed higher affinity for Caco-2 cells than for CMT-93 cells, and inhibited EPEC adherence. Following BFP-mediated adherence, secretion of EspB from adherent bacteria and reorganization of F-actin in the host cells was observed. EPEC adhering to CMT-93 cells induced far less secretion of EspB, or reorganization of F-actin in the host CMT-93 cells, than did EPEC adhering to Caco-2 cells. These results indicated that BFP plays an important role in the cell-type-dependent adherence of EPEC and in the progression to the later steps in EPEC adherence.  相似文献   

4.
Deinococcus geothermalis is an extremely radiation-resistant thermophilic bacterium closely related to the mesophile Deinococcus radiodurans, which is being engineered for in situ bioremediation of radioactive wastes. We report that D. geothermalis is transformable with plasmids designed for D. radiodurans and have generated a Hg(II)-resistant D. geothermalis strain capable of reducing Hg(II) at elevated temperatures and in the presence of 50 Gy/h. Additionally, D. geothermalis is capable of reducing Fe(III)-nitrilotriacetic acid, U(VI), and Cr(VI). These characteristics support the prospective development of this thermophilic radiophile for bioremediation of radioactive mixed waste environments with temperatures as high as 55 degrees C.  相似文献   

5.
Deinococcus geothermalis is an extremely radiation-resistant thermophilic bacterium closely related to the mesophile Deinococcus radiodurans, which is being engineered for in situ bioremediation of radioactive wastes. We report that D. geothermalis is transformable with plasmids designed for D. radiodurans and have generated a Hg(II)-resistant D. geothermalis strain capable of reducing Hg(II) at elevated temperatures and in the presence of 50 Gy/h. Additionally, D. geothermalis is capable of reducing Fe(III)-nitrilotriacetic acid, U(VI), and Cr(VI). These characteristics support the prospective development of this thermophilic radiophile for bioremediation of radioactive mixed waste environments with temperatures as high as 55°C.  相似文献   

6.
This dynamic proteome study describes the physiology of growth and survival of Deinococcus geothermalis, in conditions simulating paper machine waters being aerobic, warm, and low in carbon and manganese. The industrial environment of this species differs from its natural habitats, geothermal springs and deep ocean subsurfaces, by being highly exposed to oxygen. Quantitative proteome analysis using two-dimensional gel electrophoresis and bioinformatic tools showed expression change for 165 proteins, from which 47 were assigned to a function. We propose that D. geothermalis grew and survived in aerobic conditions by channeling central carbon metabolism to pathways where mainly NADPH rather than NADH was retrieved from the carbon source. A major part of the carbon substrate was converted into succinate, which was not a fermentation product but likely served combating reactive oxygen species (ROS). Transition from growth to nongrowth resulted in downregulation of the oxidative phosphorylation observed as reduced expression of V-type ATPase responsible for ATP synthesis in D. geothermalis. The battle against oxidative stress was seen as upregulation of superoxide dismutase (Mn dependent) and catalase, as well as several protein repair enzymes, including FeS cluster assembly proteins of the iron-sulfur cluster assembly protein system, peptidylprolyl isomerase, and chaperones. Addition of soluble Mn reinitiated respiration and proliferation with concomitant acidification, indicating that aerobic metabolism was restricted by access to manganese. We conclude that D. geothermalis prefers to combat ROS using manganese-dependent enzymes, but when manganese is not available central carbon metabolism is used to produce ROS neutralizing metabolites at the expense of high utilization of carbon substrate.  相似文献   

7.
BackgroundUropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) in approximately 50% of women. These bacteria use type 1 and P pili for host recognition and attachment. These pili are assembled by the chaperone-usher pathway of pilus biogenesis.Scope of reviewThe review examines the biogenesis and adhesion of the UPEC type 1 and P pili. Particular emphasis is drawn to the role of the outer membrane usher protein. The structural properties of the complete pilus are also examined to highlight the strength and functionality of the final assembly.Major conclusionsThe usher orchestrates the sequential addition of pilus subunits in a defined order. This process follows a subunit-incorporation cycle which consists of four steps: recruitment at the usher N-terminal domain, donor-strand exchange with the previously assembled subunit, transfer to the usher C-terminal domains and translocation of the nascent pilus.Adhesion by the type 1 and P pili is strengthened by the quaternary structure of their rod sections. The rod is endowed with spring-like properties which provide mechanical resistance against urine flow. The distal adhesins operate differently from one another, targeting receptors in a specific manner.The biogenesis and adhesion of type 1 and P pili are being therapeutically targeted, and efforts to prevent pilus growth or adherence are described.General significanceThe combination of structural and biochemical study has led to the detailed mechanistic understanding of this membrane spanning nano-machine. This can now be exploited to design novel drugs able to inhibit virulence. This is vital in the present era of resurgent antibiotic resistance. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.  相似文献   

8.
9.
Xylella fastidiosa, a bacterium responsible for Pierce's disease in grapevines, possesses both type I and type IV pili at the same cell pole. Type IV pili facilitate twitching motility, and type I pili are involved in biofilm development. The adhesiveness of the bacteria and the roles of the two pili types in attachment to a glass substratum were evaluated using a microfluidic flow chamber in conjunction with pilus-defective mutants. The average adhesion force necessary to detach wild-type X. fastidiosa cells was 147 +/- 11 pN. Mutant cells possessing only type I pili required a force of 204 +/- 22 pN for removal, whereas cells possessing only type IV pili required 119 +/- 8 pN to dislodge these cells. The experimental results demonstrate that microfluidic flow chambers are useful and convenient tools for assessing the drag forces necessary for detaching bacterial cells and that with specific pilus mutants, the role of the pilus type can be further assessed.  相似文献   

10.
Amylosucrase is a transglucosidase that catalyses the synthesis of an amylose-type polymer from sucrose, an abundant agro-resource. Here we describe a novel thermostable amylosucrase from the moderate thermophile Deinococcus geothermalis (DGAS). The dgas gene was cloned and expressed in Escherichia coli . The encoded enzyme was purified and characterized. DGAS displays a specific activity of 44 U mg−1, an optimal temperature of 50 °C and a half-life of 26 h at 50 °C. Moreover, it produces an α-glucan at 50 °C, with an average degree of polymerization of 45 and a polymerization yield of 76%. DGAS is thus the most active and thermostable amylosucrase known to date.  相似文献   

11.
罗艳  张静超 《生物工程学报》2023,39(11):4534-4549
Ⅳ型菌毛(type Ⅳ pili, TFP)作为细菌表面的重要蛋白结构,是细菌的感知器官及运动器官,在细菌生理学、细胞黏附、宿主细胞入侵、DNA摄取、蛋白质分泌、生物被膜形成、细胞运动和电子传递等方面发挥着多种作用。近年来,随着研究方法的深入和技术设备的发展,尤其是随着多种菌毛可视化工具的开发,越来越多的研究揭示了它在生命活动中的各种功能,大大加快了微生物单细胞领域的研究步伐。本文重点讨论了TFP可视化方法及在菌毛功能研究中的应用,为更好地研究和利用TFP功能提供更多的思路,为其未来在生物学、医学以及生态学中的应用提供一定的理论基础。  相似文献   

12.
Amylosucrase (ASase, EC 2.4.1.4) is a glucosyltransferase that hydrolyzes sucrose into glucose and fructose and produces amylose-like glucan polymers from the released glucose. (+)-Catechin is a plant polyphenolic metabolite having skin-whitening and antioxidant activities. In this study, the ASase gene from Deinococcus geothermalis (dgas) was expressed in Escherichia coli, while the recombinant DGAS enzyme was purified using a glutathione S-transferase fusion system. The (+)-catechin glycoside derivatives were synthesized from (+)-catechin using DGAS transglycosylation activity. We confirmed the presence of two major transglycosylation products using TLC. The (+)-catechin transglycosylation products were isolated using silica gel open column chromatography and recycling-HPLC. Two (+)-catechin major transfer products were determined through 1H and 13C NMR to be (+)-catechin-3′-O-α-d-glucopyranoside with a glucose molecule linked to (+)-catechin and (+)-catechin-3′-O-α-D-maltoside with a maltose linked to (+)-catechin. The presence of (+)-catechin maltooligosaccharides in the DGAS reaction was also confirmed via recycling-HPLC and enzymatic analysis. The effects of various reaction conditions (temperature, enzyme concentration, and molar ratio of acceptor and donor) on the yield and type of (+)-catechin glycosides were investigated.  相似文献   

13.
Deinococcus geothermalis is resistant to chemical and physical stressors and forms tenuous biofilms in paper industry. The architecture of its biofilms growing on glass and on stainless acid proof steel was studied with confocal laser scanning microscopy and fluorescent lectins and nanobeads as in situ probes. Hydrophobic nanobeads adhered to the biofilms but did not penetrate to biofilm interior. In contrast, the biofilms were readily permeable towards many different lectins. A skeletal network of glycoconjugates, reactive with Dolichos biflorus and Maclura pomifera lectins, was prominent in the space inside the biofilm colony core but absent on the exterior. Cells in the core space of the biofilm were interconnected by a network of adhesion structures, reactive with Amaranthus caudatus lectin but with none of the 65 other tested lectins. The glycoconjugates connecting the individual cells to steel reacted with Phaseolus vulgaris lectin whereas those connecting to glass mainly reacted with A. caudatus lectin. Envelopes of all cells in the D. geothermalis biofilm reacted with several other lectins, with many different specificities. We conclude that numerous different glycoconjugates are involved in the adhesion and biofilm formation of D. geothermalis , possibly contributing its unique survival capacity when exposed to dehydration, biocidal chemicals and other extreme conditions.  相似文献   

14.
15.
16.
The aim of the present work was to explore possibilities of photocatalytic TiO2 coating for reducing biofilms on non-living surfaces. The model organism, Deinococcus geothermalis, known to initiate growth of durable, colored biofilms on machine surfaces in the paper industry, was allowed to form biofilms on stainless steel, glass and TiO2 film coated glass or titanium. Field emission electron microscopy revealed that the cells in the biofilm formed at 45°C under vigorous shaking were connected to the surface by means of numerous adhesion threads of 0.1--0.3 μm in length. Adjacent cells were connected to one another by threads of 0.5--1 μm in length. An ultrastructural analysis gave no indication for the involvement of amorphous extracellular materials (e.g., slime) in the biofilm. When biofilms on photocatalytic TiO2 surfaces, submerged in water, were exposed to 20 W h m−2 of 360 nm light, both kinds of adhesion threads were completely destroyed and the D. geothermalis cells were extensively removed (from >107 down to below 106 cells cm−2). TiO2 films prepared by the sol-gel technique were slightly more effective than those prepared by the ALD technique. Doping of the TiO2 with sulfur did not enhance its biofilm-destroying capacity. The results show that photocatalytic TiO2 surfaces have potential as a self-cleaning technology for warm water using industries.  相似文献   

17.
The causative agent of gonorrhea, Neisseria gonorrhoeae, bears retractable filamentous appendages called type IV pili (Tfp). Tfp are used by many pathogenic and nonpathogenic bacteria to carry out a number of vital functions, including DNA uptake, twitching motility (crawling over surfaces), and attachment to host cells. In N. gonorrhoeae, Tfp binding to epithelial cells and the mechanical forces associated with this binding stimulate signaling cascades and gene expression that enhance infection. Retraction of a single Tfp filament generates forces of 50–100 piconewtons, but nothing is known, thus far, on the retraction force ability of multiple Tfp filaments, even though each bacterium expresses multiple Tfp and multiple bacteria interact during infection. We designed a micropillar assay system to measure Tfp retraction forces. This system consists of an array of force sensors made of elastic pillars that allow quantification of retraction forces from adherent N. gonorrhoeae bacteria. Electron microscopy and fluorescence microscopy were used in combination with this novel assay to assess the structures of Tfp. We show that Tfp can form bundles, which contain up to 8–10 Tfp filaments, that act as coordinated retractable units with forces up to 10 times greater than single filament retraction forces. Furthermore, single filament retraction forces are transient, whereas bundled filaments produce retraction forces that can be sustained. Alterations of noncovalent protein–protein interactions between Tfp can inhibit both bundle formation and high-amplitude retraction forces. Retraction forces build over time through the recruitment and bundling of multiple Tfp that pull cooperatively to generate forces in the nanonewton range. We propose that Tfp retraction can be synchronized through bundling, that Tfp bundle retraction can generate forces in the nanonewton range in vivo, and that such high forces could affect infection.  相似文献   

18.
Minor pilin subunits are conserved in Vibrio cholerae type IV pili   总被引:1,自引:0,他引:1  
The nucleotide sequences of five open reading frames within the Vibrio cholerae NAGV14 type IV pilus gene cluster were determined. The genes showed high homology to the mannose-sensitive hemagglutinin (MSHA) pilus genes mshB, mshC, mshD, mshO and mshP. PCR analysis showed that a MSHA-like gene cluster is highly conserved among different V. cholerae strains, with the exception of the previously reported major pilin subunit. Recombinant MshB and MshO proteins were purified and specific antiserum was raised to each of them. Western blotting analyses showed that these antisera reacted with purified NAGV14 and MSHA pili. The results suggested that MshB and MshO are minor components of the pilus fiber. Although there was no cross-reaction between the major pilin subunits of NAGV14 and MSHA pili, minor components seemed to be highly homologous and immunologically cross-reactive.  相似文献   

19.
Archaea, like bacteria and eukaryotes, contain proteins involved in various mechanisms of DNA repair, highlighting the importance of these processes for all forms of life. Species of the order Sulfolobales of hyperthermophilic crenarchaeota are equipped with a strongly UV-inducible type IV pilus system that promotes cellular aggregation. Here we demonstrate by fluorescence in situ hybridization that cellular aggregates are formed based on a species-specific recognition process and that UV-induced cellular aggregation mediates chromosomal marker exchange with high frequency. Recombination rates exceeded those of uninduced cultures by up to three orders of magnitude. Knockout strains of Sulfolobus acidocaldarius incapable of pilus production could not self-aggregate, but were partners in mating experiments with wild-type strains indicating that one cellular partner can mediate the DNA transfer. Since pilus knockout strains showed decreased survival upon UV treatment, we conclude that the UV-inducible DNA transfer process and subsequent homologous recombination represents an important mechanism to maintain chromosome integrity in Sulfolobus. It might also contribute substantially to the frequent chromosomal DNA exchange and horizontal gene transfer in these archaea in their natural habitat.  相似文献   

20.
Biofilm formation by Gfp-tagged Pseudomonas aeruginosa PAO1 wild type, flagella and type IV pili mutants in flow chambers irrigated with citrate minimal medium was characterized by the use of confocal laser scanning microscopy and comstat image analysis. Flagella and type IV pili were not necessary for P. aeruginosa initial attachment or biofilm formation, but the cell appendages had roles in biofilm development, as wild type, flagella and type IV pili mutants formed biofilms with different structures. Dynamics and selection during biofilm formation were investigated by tagging the wild type and flagella/type IV mutants with Yfp and Cfp and performing time-lapse confocal laser scanning microscopy in mixed colour biofilms. The initial microcolony formation occurred by clonal growth, after which wild-type P. aeruginosa bacteria spread over the substratum by means of twitching motility. The wild-type biofilms were dynamic compositions with extensive motility, competition and selection occurring during development. Bacterial migration prevented the formation of larger microcolonial structures in the wild-type biofilms. The results are discussed in relation to the current model for P. aeruginosa biofilm development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号