首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 897 毫秒
1.
Anatomical and physiological evidence shows that the primate visual brain consists of many distributed processing systems, acting in parallel. Psychophysical studies show that the activity in each of the parallel systems reaches its perceptual end-point at a different time, thus leading to a perceptual asynchrony in vision. This, together with clinical and human imaging evidence, suggests strongly that the processing systems are also perceptual systems and that the different processing-perceptual systems can act more or less autonomously. Moreover, activity in each can have a conscious correlate without necessarily involving activity in other visual systems. This leads us to conclude not only that visual consciousness is itself modular, reflecting the basic modular organization of the visual brain, but that the binding of cellular activity in the processing-perceptual systems is more properly thought of as a binding of the consciousnesses generated by each of them. It is this binding that gives us our integrated image of the visual world.  相似文献   

2.
We present below a simple hypothesis on what we believe is a characteristic of visual consciousness. It is derived from facts about the visual brain revealed in the past quarter of a century, but it relies most especially on psychophysical evidence which shows that different attributes of the visual scene are consciously perceived at different times. This temporal asynchrony in visual perception reveals, we believe, a plurality of visual consciousnesses that are asynchronous with respect to each other, reflecting the modular organization of the visual brain. We further hypothesize that when two attributes (e.g. colour and motion) are presented simultaneously, the activity of cells in a given processing system is sufficient to create a conscious experience of the corresponding attribute (e.g. colour), without the necessity for interaction with the activities of cells in other processing systems (e.g. motion). Thus, any binding of the activity of cells in different systems should be more properly thought of as a binding of the conscious experiences generated in each system.  相似文献   

3.
The visual brain consists of many different visual areas, which are functionally specialized to process and perceive different attributes of the visual scene. However, the time taken to process different attributes varies; consequently, we see some attributes before others. It follows that there is a perceptual asynchrony and hierarchy in visual perception. Because perceiving an attribute is tantamount to becoming conscious of it, it follows that we become conscious of different attributes at different times. Visual consciousness is therefore distributed in time. Given that we become conscious of different visual attributes because of activity at different, functionally specialized, areas of the visual brain, it follows that visual consciousness is also distributed in space. Therefore, visual consciousness is not a single unified entity, but consists of many microconsciousnesses.  相似文献   

4.
The theory of multistage integration is based on evidence that the visual brain consists of several parallel multistage processing systems, each specialized for a given attribute such as colour or motion. Each stage of a given system processes information at a distinct level of complexity. Our theory supposes that activity at any stage of a given multistage processing system is perceptually explicit--that is to say, it requires no further processing to generate a conscious experience. This activity can be integrated, or bound, with the perceptually explicit activity at any given stage of another or the same multistage processing system. Such binding is therefore not a process that generates a conscious experience, but rather one that brings different conscious experiences together. Many perceptual advantages result from such a flexible and dynamic integrative system. Conversely, there would be disadvantages to limiting perception and binding to hypothetical ''terminal'' stages of such processing systems or to hypothetical ''integrator'' areas. Although we formulate our hypothesis in terms of the visual brain, we believe it might form a general principle of brain functioning.  相似文献   

5.
In 1935 Edwin Boring proposed that each attribute of sensation reflects the activity of a different neural circuit. If this idea is valid, it could facilitate both psychophysical and neurophysiological research on sensory systems. We think it likely that Boring's formulation is correct for three reasons: 1) Different sensory attributes reflect conscious information about different parameters of a stimulus. To be measured by any device, each of these parameters must be individually computed. Different neural circuits would appear to be necessary for the nervous system to carry out these different computations. 2) Perceived information about different sensory attributes can be made to diverge by appropriate manipulations of the stimuli. If there is a rigorous relationship between conscious sensory experience and neural activity, such a divergence implies that different sensory attributes are served by different neural circuits. 3) Accurate information about a sensory attribute requires that a human observer's attention be focused on that attribute. Changes in direction of attention are thought to involve a process of switching from one neural circuit to another, and provide another way to cause perceived information about different sensory attributes to diverge.  相似文献   

6.
采用事件相关电位技术研究了在视觉搜索过程中的外源易化和返回抑制(inhibition of return,IOR)的相互关系。当外源注意保持在序列搜索过的位置上时,有一个延时反应(即IOR),伴随其产生的相关脑电成分有:分布在后顶的潜伏期为200 ms 的正差异、分布在前额叶内侧靠左的潜伏期为240 毫秒的负差异,以及分布在两侧颞顶联合区的潜伏期为280 ms 的负差异。而当外源注意保持在平行搜索的位置上时,则出现了明显的易化效应,伴随其产生的脑电成分仅为分布在枕顶区域的潜伏期为280 ms 的负差异。这些结果表明,外源易化和IOR 涉及了不同的脑区和神经过程,从而支持两者在机制上是可分离性的观点。  相似文献   

7.
Visual latencies, and their variation with stimulus attributes, can provide information about the level in the visual system at which different attributes of the image are analysed, and decisions about them made. A change in the colour, structure or movement of a visual stimulus brings about a highly reproducible transient constriction of the pupil that probably depends on visual cortical mechanisms. We measured this transient response to changes in several attributes of visual stimuli, and also measured manual reaction times to the same stimulus changes. Through analysis of latencies, we hoped to establish whether changes in different stimulus attributes were processed by mechanisms at the same or different levels in the visual pathway. Pupil responses to a change in spatial structure or colour are almost identical, but both are ca. 40 ms slower than those to a change in light flux, which are thought to depend largely on subcortical pathways. Manual reaction times to a change in spatial structure or colour, or to the onset of coherent movement, differ reliably, and all are longer than the reaction time to a change in light flux. On average, observers take 184 ms to detect a change in light flux, 6 ms more to detect the onset of a grating, 30 ms more to detect a change in colour, and 37 ms more to detect the onset of coherent motion. The pattern of latency variation for pupil responses and reaction times suggests that the mechanisms that trigger the responses lie at different levels in cortex. Given our present knowledge of visual cortical organization, the long reaction time to the change in motion is surprising. The range of reaction times across different stimuli is consistent with decisions about the onset of a grating being made in V1 and decisions about the change in colour or change in motion being made in V4.  相似文献   

8.
Keary N  Bischof HJ 《PloS one》2012,7(6):e38697
Many animals are able to perceive the earth magnetic field and to use it for orientation and navigation within the environment. The mechanisms underlying the perception and processing of magnetic field information within the brain have been thoroughly studied, especially in birds, but are still obscure. Three hypotheses are currently discussed, dealing with ferromagnetic particles in the beak of birds, with the same sort of particles within the lagena organs, or describing magnetically influenced radical-pair processes within retinal photopigments. Each hypothesis is related to a well-known sensory organ and claims parallel processing of magnetic field information with somatosensory, vestibular and visual input, respectively. Changes in activation within nuclei of the respective sensory systems have been shown previously. Most of these previous experiments employed intensity enhanced magnetic stimuli or lesions. We here exposed unrestrained zebra finches to either a stationary or a rotating magnetic field of the local intensity and inclination. C-Fos was used as an activity marker to examine whether the two treatments led to differences in fourteen brain areas including nuclei of the somatosensory, vestibular and visual system. An ANOVA revealed an overall effect of treatment, indicating that the magnetic field change was perceived by the birds. While the differences were too small to be significant in most areas, a significant enhancement of activation by the rotating stimulus was found in a hippocampal subdivision. Part of the hyperpallium showed a strong, nearly significant, increase. Our results are compatible with previous studies demonstrating an involvement of at least three different sensory systems in earth magnetic field perception and suggest that these systems, probably less elaborated, may also be found in nonmigrating birds.  相似文献   

9.

Background

In the human visual system, different attributes of an object, such as shape, color, and motion, are processed separately in different areas of the brain. This raises a fundamental question of how are these attributes integrated to produce a unified perception and a specific response. This “binding problem” is computationally difficult because all attributes are assumed to be bound together to form a single object representation. However, there is no firm evidence to confirm that such representations exist for general objects.

Methodology/Principal Findings

Here we propose a paired-attribute model in which cognitive processes are based on multiple representations of paired attributes. In line with the model''s prediction, we found that multiattribute stimuli can produce an illusory perception of a multiattribute object arising from erroneous integration of attribute pairs, implying that object recognition is based on parallel perception of paired attributes. Moreover, in a change-detection task, a feature change in a single attribute frequently caused an illusory perception of change in another attribute, suggesting that multiple pairs of attributes are stored in memory.

Conclusions/Significance

The paired-attribute model can account for some novel illusions and controversial findings on binocular rivalry and short-term memory. Our results suggest that many cognitive processes are performed at the level of paired attributes rather than integrated objects, which greatly facilitates the binding problem and provides simpler solutions for it.  相似文献   

10.

Purpose

We sought brain activity that predicts visual consciousness.

Methods

We used electroencephalography (EEG) to measure brain activity to a 1000-ms display of sine-wave gratings, oriented vertically in one eye and horizontally in the other. This display yields binocular rivalry: irregular alternations in visual consciousness between the images viewed by the eyes. We replaced both gratings with 200 ms of darkness, the gap, before showing a second display of the same rival gratings for another 1000 ms. We followed this by a 1000-ms mask then a 2000-ms inter-trial interval (ITI). Eleven participants pressed keys after the second display in numerous trials to say whether the orientation of the visible grating changed from before to after the gap or not. Each participant also responded to numerous non-rivalry trials in which the gratings had identical orientations for the two eyes and for which the orientation of both either changed physically after the gap or did not.

Results

We found that greater activity from lateral occipital-parietal-temporal areas about 180 ms after initial onset of rival stimuli predicted a change in visual consciousness more than 1000 ms later, on re-presentation of the rival stimuli. We also found that less activity from parietal, central, and frontal electrodes about 400 ms after initial onset of rival stimuli predicted a change in visual consciousness about 800 ms later, on re-presentation of the rival stimuli. There was no such predictive activity when the change in visual consciousness occurred because the stimuli changed physically.

Conclusion

We found early EEG activity that predicted later visual consciousness. Predictive activity 180 ms after onset of the first display may reflect adaption of the neurons mediating visual consciousness in our displays. Predictive activity 400 ms after onset of the first display may reflect a less-reliable brain state mediating visual consciousness.  相似文献   

11.
1. The effect of thyroidectomy on turnover rates of liver, kidney and brain mitochondrial proteins was examined. 2. In the euthyroid state, liver and kidney mitochondria show a synchronous turnover with all protein components showing more or less identical half-lives compared with the whole mitochondria. The brain mitochondrial proteins show asynchronous turnover, the soluble proteins having shorter half-lives. 3. Mitochondrial DNA (m-DNA) of liver and kidney has half-lives comparable with that of whole mitochondria from these tissues. 4. Thyroidectomy results in increased half-lives of liver and kidney mitochondria, with no apparent change in the half-life of brain mitochondria. 5. A detailed investigation of the turnover rates of several protein components revealed a significant decrease in the turnover rates of mitochondrial insoluble proteins from the three tissues under study. 6. The turnover rates of m-DNA of liver and kidney show a parallel decrease. 7. Thus it is apparent that thyroid hormone(s) may have a regulatory role in maintaining the synchrony of turnover of liver and kidney mitochondria in the euthyroid state. Turnover of brain mitochondria may perhaps be regulated by some other factor(s) in addition to thyroid hormone(s). 8. It seems likely that during mitochondrial turnover m-DNA and insoluble proteins may constitute a major unit. 9. The mitochondrial protein contents of the three tissues are not affected by thyroidectomy. 10. No correlation was seen between the turnover rate of mitochondria and cathepsin activity in any of the tissues under study in normal or thyroidectomized animals. 11. On the other hand, mitochondrial proteinase activity shows good correlation with the turnover rates of mitochondria in normal animals, and a parallel decrease in activity comparable with the decreased rates of turnover is observed after thyroidectomy. 12. It is concluded that mitochondrial proteinase activity may play a significant role in their protein turnover.  相似文献   

12.
Multisensory integration involves combining information from different senses to create a perception. The diverse characteristics of different sensory systems make it interesting to determine how cooperation and competition contribute to emotional experiences. Therefore, the aim of this study were to estimate the bias from the match attributes of the auditory and visual modalities and to depict specific brain activity frequency (theta, alpha, beta, and gamma) patterns related to a peaceful mood by using magnetoencephalography. The present study provides evidence of auditory domination in perceptual bias during multimodality processing of peaceful consciousness. Coherence analysis suggested that the theta oscillations are a transmitter of emotion signals, with the left and right brains being active in peaceful and fearful moods, respectively. Notably, hemispheric lateralization was also apparent in the alpha and beta oscillations, which might govern simple or pure information (e.g. from single modality) in the right brain but complex or mixed information (e.g. from multiple modalities) in the left brain.  相似文献   

13.
Neuroimaging studies have identified several motion-sensitive visual areas in the human brain, but the time course of their activation cannot be measured with these techniques. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to determine the spatio-temporal profile of motion-onset visual evoked potentials for slow and fast motion stimuli and to localize its neural generators. We found that cortical activity initiates in the primary visual area (V1) for slow stimuli, peaking 100 ms after the onset of motion. Subsequently, activity in the mid-temporal motion-sensitive areas, MT+, peaked at 120 ms, followed by peaks in activity in the more dorsal area, V3A, at 160 ms and the lateral occipital complex at 180 ms. Approximately 250 ms after stimulus onset, activity fast motion stimuli was predominant in area V6 along the parieto-occipital sulcus. Finally, at 350 ms (100 ms after the motion offset) brain activity was visible again in area V1. For fast motion stimuli, the spatio-temporal brain pattern was similar, except that the first activity was detected at 70 ms in area MT+. Comparing functional magnetic resonance data for slow vs. fast motion, we found signs of slow-fast motion stimulus topography along the posterior brain in at least three cortical regions (MT+, V3A and LOR).  相似文献   

14.
It has been demonstrated that subjects do not report changes in color and direction of motion as being co-incidental when they occur synchronously. Instead, for the changes to be reported as being synchronous, changes in direction of motion must precede changes in color. To explain this observation, some researchers have suggested that the neural processing of color and motion is asynchronous. This interpretation has been criticized on the basis that processing time may not correlate directly and invariantly with perceived time of occurrence. Here we examine this possibility by making use of the color-contingent motion aftereffect. By correlating color states disproportionately with two directions of motion, we produced and measured color-contingent motion aftereffects as a function of the range of physical correlations. The aftereffects observed are consistent with the perceptual correlation between color and motion being different from the physical correlation. These findings demonstrate asynchronous processing for different stimulus attributes, with color being processed more quickly than motion. This suggests that the time course of perceptual experience correlates directly with that of neural activity.  相似文献   

15.
Corneil BD  Olivier E  Munoz DP 《Neuron》2004,42(5):831-841
Express saccades promote the acquisition of visual targets at extremely short reaction times. Because of the head's considerable inertia, it is unknown whether express saccades are accompanied by a parallel command to the head. Here, by recording electromyographic (EMG) activity from monkey neck muscles, we demonstrate that visual target presentation elicits time-locked, lateralized recruitment of neck muscles at extremely short latencies (55-95 ms). Remarkably, such recruitment not only accompanies express saccades, but also precedes nonexpress saccades, occasionally by up to 150 ms. These results demonstrate selective gating of components of descending commands from the superior colliculus to prevent express saccades yet permit recruitment of a head orienting synergy. We conclude that such selective gating aids eye-head coordination by permitting force development at neck muscles while a decision to commit to a gaze shift is being made, optimizing the contribution of the more inertial head to the ensuing gaze shift.  相似文献   

16.
In extending our previous work, we addressed the question of whether different visual attributes are perceived separately when they belong to different objects, rather than the same one. Using our earlier psychophysical method, but separating the attributes to be paired in two different halves of the screen, we found that human subjects misbind the colour and the direction of motion, or the colour and the orientation of lines, because colour, form, and motion are perceived separately and at different times. The results therefore show that there is a perceptual temporal hierarchy in vision.  相似文献   

17.
It is now apparent that the visual system reacts to stimuli very fast, with many brain areas activated within 100 ms. It is, however, unclear how much detail is extracted about stimulus properties in the early stages of visual processing. Here, using magnetoencephalography we show that the visual system separates different facial expressions of emotion well within 100 ms after image onset, and that this separation is processed differently depending on where in the visual field the stimulus is presented. Seven right-handed males participated in a face affect recognition experiment in which they viewed happy, fearful and neutral faces. Blocks of images were shown either at the center or in one of the four quadrants of the visual field. For centrally presented faces, the emotions were separated fast, first in the right superior temporal sulcus (STS; 35–48 ms), followed by the right amygdala (57–64 ms) and medial pre-frontal cortex (83–96 ms). For faces presented in the periphery, the emotions were separated first in the ipsilateral amygdala and contralateral STS. We conclude that amygdala and STS likely play a different role in early visual processing, recruiting distinct neural networks for action: the amygdala alerts sub-cortical centers for appropriate autonomic system response for fight or flight decisions, while the STS facilitates more cognitive appraisal of situations and links appropriate cortical sites together. It is then likely that different problems may arise when either network fails to initiate or function properly.  相似文献   

18.
We address the following question: Is there a difference (D) between the amount of time for auditory and visual stimuli to be perceived? On each of 1000 trials, observers were presented with a light-sound pair, separated by a stimulus onset asynchrony (SOA) between -250 ms (sound first) and +250 ms. Observers indicated if the light-sound pair came on simultaneously by pressing one of two (yes or no) keys. The SOA most likely to yield affirmative responses was defined as the point of subjective simultaneity (PSS). PSS values were between -21 ms (i.e. sound 21 ms before light) and +150 ms. Evidence is presented that each PSS is observer specific. In a second experiment, each observer was tested using two observer-stimulus distances. The resultant PSS values are highly correlated (r = 0.954, p = 0.003), suggesting that each observer''s PSS is stable. PSS values were significantly affected by observer-stimulus distance, suggesting that observers do not take account of changes in distance on the resultant difference in arrival times of light and sound. The difference RTd in simple reaction time to single visual and auditory stimuli was also estimated; no evidence that RTd is observer specific or stable was found. The implications of these findings for the perception of multisensory stimuli are discussed.  相似文献   

19.
Hypnotic suggestions may change the perceived color of objects. Given that chromatic stimulus information is processed rapidly and automatically by the visual system, how can hypnotic suggestions affect perceived colors in a seemingly immediate fashion? We studied the mechanisms of such color alterations by measuring electroencephalography in two highly suggestible participants as they perceived briefly presented visual shapes under posthypnotic color alternation suggestions such as “all the squares are blue”. One participant consistently reported seeing the suggested colors. Her reports correlated with enhanced evoked upper beta-band activity (22 Hz) 70–120 ms after stimulus in response to the shapes mentioned in the suggestion. This effect was not observed in a control condition where the participants merely tried to simulate the effects of the suggestion on behavior. The second participant neither reported color alterations nor showed the evoked beta activity, although her subjective experience and event-related potentials were changed by the suggestions. The results indicate a preconscious mechanism that first compares early visual input with a memory representation of the suggestion and consequently triggers the color alteration process in response to the objects specified by the suggestion. Conscious color experience is not purely the result of bottom-up processing but it can be modulated, at least in some individuals, by top-down factors such as hypnotic suggestions.  相似文献   

20.
Convergent evolution in response to similar selective pressures is a well‐known phenomenon in evolutionary biology. Less well understood is how selection drives convergence in protein function, and the underlying mechanisms by which this can be achieved. Here, we investigate functional convergence in the visual system of two distantly related lineages of high‐altitude adapted Andean and Himalayan catfishes. Statistical analyses revealed in the two high‐altitude lineages, a parallel acceleration of evolutionary rates in rhodopsin, the dim‐light visual pigment. However, the elevated rates were found to be accompanied by substitutions at different sites in the protein. Experiments substituting Andean‐ or Himalayan‐specific residues significantly accelerated the kinetic rates of rhodopsin, destabilizing the ligand‐bound forms. As found in cold‐adapted enzymes, this phenotype likely compensates for a cold‐induced decrease in kinetic rates, properties of rhodopsin mediating rod sensitivity and visual performance. Our study suggests that molecular convergence in protein function can be driven by parallel shifts in evolutionary rates but via nonparallel molecular mechanisms. Signatures of natural selection may therefore be a powerful guide for identifying complex instances of functional convergence across a wider range of protein systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号