首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytokinesis is powered by the contraction of actomyosin filaments within the newly assembled contractile ring. Microtubules are a spindle component that is essential for the induction of cytokinesis. This induction could use central spindle and/or astral microtubules to stimulate cortical contraction around the spindle equator (equatorial stimulation). Alternatively, or in addition, induction could rely on astral microtubules to relax the polar cortex (polar relaxation). To investigate the relationship between microtubules, cortical stiffness, and contractile ring assembly, we used different configurations of microtubules to manipulate the distribution of actin in living silkworm spermatocytes. Mechanically repositioned, noninterdigitating microtubules can induce redistribution of actin at any region of the cortex by locally excluding cortical actin filaments. This cortical flow of actin promotes regional relaxation while increasing tension elsewhere (normally at the equatorial cortex). In contrast, repositioned interdigitating microtubule bundles use a novel mechanism to induce local stimulation of contractility anywhere within the cortex; at the antiparallel plus ends of central spindle microtubules, actin aggregates are rapidly assembled de novo and transported laterally to the equatorial cortex. Relaxation depends on microtubule dynamics but not on RhoA activity, whereas stimulation depends on RhoA activity but is largely independent of microtubule dynamics. We conclude that polar relaxation and equatorial stimulation mechanisms redundantly supply actin for contractile ring assembly, thus increasing the fidelity of cleavage.  相似文献   

2.
The chromosomal passenger complex (CPC), containing Aurora B kinase, Inner Centromere Protein, Survivin, and Borealin, regulates chromosome condensation and interaction between kinetochores and microtubules at metaphase, then relocalizes to midzone microtubules at anaphase and regulates central spindle organization and cytokinesis. However, the precise role(s) played by the CPC in anaphase have been obscured by its prior functions in metaphase. Here we identify a missense allele of Drosophila Survivin that allows CPC localization and function during metaphase but not cytokinesis. Analysis of mutant cells showed that Survivin is essential to target the CPC and the mitotic kinesin-like protein 1 orthologue Pavarotti (Pav) to the central spindle and equatorial cell cortex during anaphase in both larval neuroblasts and spermatocytes. Survivin also enabled localization of Polo kinase and Rho at the equatorial cortex in spermatocytes, critical for contractile ring assembly. In neuroblasts, in contrast, Survivin function was not required for localization of Rho, Polo, or Myosin II to a broad equatorial cortical band but was required for Myosin II to transition to a compact, fully constricted ring. Analysis of this "separation-of-function" allele demonstrates the direct role of Survivin and the CPC in cytokinesis and highlights striking differences in regulation of cytokinesis in different cell systems.  相似文献   

3.
Spatial and temporal regulation of cytokinesis is essential for cell division, yet the mechanisms that control the formation and constriction of the contractile ring are incompletely understood. In the fission yeast Schizosaccharomyces pombe proteins that contribute to the cytokinetic contractile ring accumulate during interphase in nodes—precursor structures around the equatorial cortex. During mitosis, additional proteins join these nodes, which condense to form the contractile ring. The cytokinesis protein Blt1p is unique in being present continuously in nodes from early interphase through to the contractile ring until cell separation. Blt1p was shown to stabilize interphase nodes, but its functions later in mitosis were unclear. We use analytical ultracentrifugation to show that purified Blt1p is a tetramer. We find that Blt1p interacts physically with Sid2p and Mob1p, a protein kinase complex of the septation initiation network, and confirm known interactions with F-BAR protein Cdc15p. Contractile rings assemble normally in blt1∆ cells, but the initiation of ring constriction and completion of cell division are delayed. We find three defects that likely contribute to this delay. Without Blt1p, contractile rings recruited and retained less Sid2p/Mob1p and Clp1p phosphatase, and β-glucan synthase Bgs1p accumulated slowly at the cleavage site.  相似文献   

4.
Different models for animal cell cytokinesis posit that the stiffness of the equatorial cortex is either increased or decreased relative to the stiffness of the polar cortex. A recent work has suggested that the critical cytokinesis signaling complex centralspindlin may reduce the stiffness of the equatorial cortex by inactivating the small GTPase Rac. To determine if such a reduction occurs and if it depends on centralspindlin, we devised a method to estimate cortical bending stiffness with high spatio-temporal resolution from in vivo cell shapes. Using the early Caenorhabditis elegans embryo as a model, we show that the stiffness of the equatorial cell surface is reduced during cytokinesis, whereas the stiffness of the polar cell surface remains stiff. The equatorial reduction of stiffness was compromised in cells with a mutation in the gene encoding the ZEN-4/kinesin-6 subunit of centralspindlin. Theoretical modeling showed that the absence of the equatorial reduction of stiffness could explain the arrest of furrow ingression in the mutant. By contrast, the equatorial reduction of stiffness was sufficient to generate a cleavage furrow even without the constriction force of the contractile ring. In this regime, the contractile ring had a supportive contribution to furrow ingression. We conclude that stiffness is reduced around the equator in a centralspindlin-dependent manner. In addition, computational modeling suggests that proper regulation of stiffness could be sufficient for cleavage furrow ingression.  相似文献   

5.
Cytokinesis is the process of physical cleavage at the end of cell division; it proceeds by ingression of an acto-myosin furrow at the equator of the cell. Its failure leads to multinucleated cells and is a possible cause of tumorigenesis. Here, we calculate the full dynamics of furrow ingression and predict cytokinesis completion above a well-defined threshold of equatorial contractility. The cortical acto-myosin is identified as the main source of mechanical dissipation and active forces. Thereupon, we propose a viscous active nonlinear membrane theory of the cortex that explicitly includes actin turnover and where the active RhoA signal leads to an equatorial band of myosin overactivity. The resulting cortex deformation is calculated numerically, and reproduces well the features of cytokinesis such as cell shape and cortical flows toward the equator. Our theory gives a physical explanation of the independence of cytokinesis duration on cell size in embryos. It also predicts a critical role of turnover on the rate and success of furrow constriction. Scaling arguments allow for a simple interpretation of the numerical results and unveil the key mechanism that generates the threshold for cytokinesis completion: cytoplasmic incompressibility results in a competition between the furrow line tension and the cell poles’ surface tension.  相似文献   

6.
Some mammalian cells are able to divide via both the classic contractile ring-dependent method (cytokinesis A) and a contractile ring-independent, adhesion-dependent method (cytokinesis B). Cytokinesis A is triggered by RhoA, which, in HeLa cells, is activated by the guanine nucleotide-exchange factor Ect2 localized at the central spindle and equatorial cortex. Here, we show that in HT1080 cells undergoing cytokinesis A, Ect2 does not localize in the equatorial cortex, though RhoA accumulates there. Moreover, Ect2 depletion resulted in only modest multinucleation of HT1080 cells, enabling us to establish cell lines in which Ect2 was constitutively depleted. Thus, RhoA is activated via an Ect2-independent pathway during cytokinesis A in HT1080 cells. During cytokinesis B, Ect2-depleted cells showed narrower accumulation of RhoA at the equatorial cortex, accompanied by compromised pole-to-equator polarity, formation of ectopic lamellipodia in regions where RhoA normally would be distributed, and delayed formation of polar lamellipodia. Furthermore, C3 exoenzyme inhibited equatorial RhoA activation and polar lamellipodia formation. Conversely, expression of dominant active Ect2 in interphase HT1080 cells enhanced RhoA activity and suppressed lamellipodia formation. These results suggest that equatorial Ect2 locally suppresses lamellipodia formation via RhoA activation, which indirectly contributes to restricting lamellipodia formation to polar regions during cytokinesis B.  相似文献   

7.
Peripheral microtubules (MTs) near the cell cortex are essential for the positioning and continuous constriction of the contractile ring (CR) in cytokinesis. Time-lapse observations of Drosophila male meiosis showed that myosin II was first recruited along the cell cortex independent of MTs. Then, shortly after peripheral MTs made contact with the equatorial cortex, myosin II was concentrated there in a narrow band. After MT contact, anillin and F-actin abruptly appeared on the equatorial cortex, simultaneously with myosin accumulation. We found that the accumulation of myosin did not require centralspindlin, but was instead dependent on Orbit, a Drosophila ortholog of the MT plus-end tracking protein CLASP. This protein is required for stabilization of central spindle MTs, which are essential for cytokinesis. Orbit was also localized in a mid-zone of peripheral MTs, and was concentrated in a ring at the equatorial cortex during late anaphase. Fluorescence resonance energy transfer experiments indicated that Orbit is closely associated with F-actin in the CR. We also showed that the myosin heavy chain was in close proximity with Orbit in the cleavage furrow region. Centralspindlin was dispensable in Orbit ring formation. Instead, the Polo-KLP3A/Feo complex was required for the Orbit accumulation independently of the Orbit MT-binding domain. However, orbit mutations of consensus sites for the phosphorylation of Cdk1 or Polo did not influence the Orbit accumulation, suggesting an indirect regulatory role of these protein kinases in Orbit localization. Orbit was also necessary for the maintenance of the CR. Our data suggest that Orbit plays an essential role as a connector between MTs and the CR in Drosophila male meiosis.  相似文献   

8.
Cytokinesis in animal cells is accomplished by the active constriction of the equatorial regions of a cell by an actomyosin-containing contractile ring. The mitotic apparatus specifies the position and orientation of the furrow such that the mitotic spindle is always bisected. Global cortical contractions occur in the cortex of a cell prior to cytokinesis that are independent of the presence of the mitotic apparatus. It was proposed some years ago that the asters of the mitotic apparatus could act to relax the preformed cortical tension in their vicinity. This would produce a differential in tension between the equatorial regions and the adjacent regions of the cortex so that the equatorial regions would contract, forming a cleavage furrow. It can be shown that, as it stands, this theory cannot explain cleavage. However, if cortical contractile elements are assumed to be laterally mobile in the plane of the cortex, then the astral relaxation theory can account for many of the aspects of cleavage, including the formation of the contractile ring. Similar schemes may account for the behaviour of the lamellapodia of motile cells.  相似文献   

9.
The temporal and spatial regulation of cytokinesis requires an interaction between the anaphase mitotic spindle and the cell cortex. However, the relative roles of the spindle asters or the central spindle bundle are not clear in mammalian cells. The central spindle normally serves as a platform to localize key regulators of cell cleavage, including passenger proteins. Using time-lapse and immunofluorescence analysis, we have addressed the consequences of eliminating the central spindle by ablation of PRC1, a microtubule bundling protein that is critical to the formation of the central spindle. Without a central spindle, the asters guide the equatorial cortical accumulation of anillin and actin, and of the passenger proteins, which organize into a subcortical ring in anaphase. Furrowing goes to completion, but abscission to create two daughter cells fails. We conclude the central spindle bundle is required for abscission but not for furrowing in mammalian cells.  相似文献   

10.
The mechanism that positions the cytokinetic contractile ring is unknown, but derives from the spindle midzone. We show that an interaction between the Rho GTP exchange factor, Pebble, and the Rho family GTPase-activating protein, RacGAP50C, connects the contractile ring to cortical microtubules at the site of furrowing in D. melanogaster cells. Pebble regulates actomyosin organization, while RacGAP50C and its binding partner, the Pavarotti kinesin-like protein, regulate microtubule bundling. All three factors are required for cytokinesis. As furrowing begins, these proteins colocalize to a cortical equatorial ring. We propose that RacGAP50C-Pavarotti complexes travel on cortical microtubules to the cell equator, where they associate with the Pebble RhoGEF to position contractile ring formation and coordinate F-actin and microtubule remodeling during cytokinesis.  相似文献   

11.
Cytokinesis is the process of physical cleavage at the end of cell division; it proceeds by ingression of an acto-myosin furrow at the equator of the cell. Its failure leads to multinucleated cells and is a possible cause of tumorigenesis. Here, we calculate the full dynamics of furrow ingression and predict cytokinesis completion above a well-defined threshold of equatorial contractility. The cortical acto-myosin is identified as the main source of mechanical dissipation and active forces. Thereupon, we propose a viscous active nonlinear membrane theory of the cortex that explicitly includes actin turnover and where the active RhoA signal leads to an equatorial band of myosin overactivity. The resulting cortex deformation is calculated numerically, and reproduces well the features of cytokinesis such as cell shape and cortical flows toward the equator. Our theory gives a physical explanation of the independence of cytokinesis duration on cell size in embryos. It also predicts a critical role of turnover on the rate and success of furrow constriction. Scaling arguments allow for a simple interpretation of the numerical results and unveil the key mechanism that generates the threshold for cytokinesis completion: cytoplasmic incompressibility results in a competition between the furrow line tension and the cell poles’ surface tension.  相似文献   

12.
On the mechanisms of cytokinesis in animal cells   总被引:6,自引:0,他引:6  
We present a model that attempts to explain some aspects of cytokinesis in animal cells. We propose two separate phases of cytokinesis. The first is not dependent on the presence of the mitotic apparatus and involves a general activation of cortical contractile elements resulting in the development of a surface tension. In the second phase the asters of the mitotic apparatus interact and modulate the activities of the tension generating elements in the cortex to produce gradients of surface tension with the highest values being at the equator. Tension generating elements are assumed to be free to move in the plane of the cortex so that they will consequently move up the gradient of tension and accumulate as an equatorial belt of oriented elements i.e. the contractile ring. The model was simulated on a computer and is capable of reproducing some of the wide variety of cleavage configurations that are observed.  相似文献   

13.
To complete cell division with high fidelity, cytokinesis must be coordinated with chromosome segregation. Mammalian Polo-like kinase 1, Plk1, may function as a critical link because it is required for chromosome segregation and establishment of the cleavage plane following anaphase onset. A central spindle–localized pool of the RhoGEF Ect2 promotes activation of the small GTPase RhoA, which drives contractile ring assembly at the equatorial cortex. Here, we have investigated how Plk1 promotes the central spindle recruitment of Ect2. Plk1 phosphorylates the noncatalytic N terminus of the RhoGAP HsCyk-4 at the central spindle, creating a phospho-epitope recognized by the BRCA1 C-terminal (BRCT) repeats of Ect2. Failure to phosphorylate HsCyk-4 blocks Ect2 recruitment to the central spindle and the subsequent induction of furrowing. Microtubules, as well as the microtubule-associated protein (MAP) Prc1, facilitate Plk1 phosphorylation of HsCyk-4. Characterization of a phosphomimetic version of HsCyk-4 indicates that Plk1 promotes Ect2 recruitment through multiple targets. Collectively, our data reveal that formation of the HsCyk-4-Ect2 complex is subject to multiple layers of regulation to ensure that RhoA activation occurs between the segregated sister chromatids during anaphase.  相似文献   

14.
The mitotic microtubule array plays two primary roles in cell division. It acts as a scaffold for the congression and separation of chromosomes, and it specifies and maintains the contractile-ring position. The current model for initiation of Drosophila and mammalian cytokinesis [1-5] postulates that equatorial localization of a RhoGEF (Pbl/Ect2) by a microtubule-associated motor protein complex creates a band of activated RhoA [6], which subsequently recruits contractile-ring components such as actin, myosin, and Anillin [1-3]. Equatorial microtubules are essential for continued constriction, but how they interact with the contractile apparatus is unknown. Here, we report the first direct molecular link between the microtubule spindle and the actomyosin contractile ring. We find that the spindle-associated component, RacGAP50C, which specifies the site of cleavage [1-5], interacts directly with Anillin, an actin and myosin binding protein found in the contractile ring [7-10]. Both proteins depend on this interaction for their localization. In the absence of Anillin, the spindle-associated RacGAP loses its association with the equatorial cortex, and cytokinesis fails. These results account for the long-observed dependence of cytokinesis on the continual presence of microtubules at the cortex.  相似文献   

15.
During cytokinesis, global and equatorial pathways deform the cell cortex in a stereotypical manner, which leads to daughter cell separation. Equatorial forces are largely generated by myosin-II and the actin crosslinker, cortexillin-I. In contrast, global mechanics are determined by the cortical cytoskeleton, including the actin crosslinker, dynacortin. We used direct morphometric characterization and laser-tracking microrheology to quantify cortical mechanical properties of wild-type and cortexillin-I and dynacortin mutant Dictyostelium cells. Both cortexillin-I and dynacortin influence cytokinesis and interphase cortical viscoelasticity as predicted from genetics and biochemical data using purified dynacortin proteins. Our studies suggest that the regulation of cytokinesis ultimately requires modulation of proteins that control the cortical mechanical properties that establish the force-balance that specifies the shapes of cytokinesis. The combination of genetic, biochemical, and biophysical observations suggests that the cell's cortical mechanical properties control how the cortex is remodeled during cytokinesis.  相似文献   

16.
Equatorial organization of myosin II and actin has been recognized as a universal event in cytokinesis of animal cells. Current models for the formation of equatorial cortex favor either directional cortical transport toward the equator or localized de novo assembly. However, this process has never been analyzed directly in dividing mammalian cells at a high resolution. Here we applied total internal reflection fluorescence microscope (TIRF-M), coupled with spatial temporal image correlation spectroscopy (STICS) and a new analytical approach termed temporal differential microscopy (TDM), to image the dynamics of myosin II and actin during the assembly of equatorial cortex. Our results indicated distinct and at least partially independent mechanisms for the early equatorial recruitment of myosin and actin filaments. Cortical myosin showed no detectable directional flow during early cytokinesis. In addition to equatorial assembly, we showed that localized inhibition of disassembly contributed to the formation of the equatorial myosin band. In contrast to myosin, actin filaments underwent a striking flux toward the equator. Myosin motor activity was required for the actin flux, but not for actin concentration in the furrow, suggesting that there was a flux-independent, de novo mechanism for actin recruitment along the equator. Our results indicate that cytokinesis involves signals that regulate both assembly and disassembly activities and argue against mechanisms that are coupled to global cortical movements.  相似文献   

17.
Owing to the rapid advances in genomic, proteomic and imaging technologies, the field of cytokinesis has seen rapid advances during the past decade. However, the basic model for the early stage of ingression, known as the contractile ring hypothesis, remains largely unchanged. From recent observations, it is becoming clear that early cytokinesis of animal cells involves a more extensive set of events, both temporally and spatially, than what is encompassed by the original contractile ring hypothesis. Activities relevant to cytokinesis, such as cortical contraction, can initiate well before onset of anaphase. Furthermore, equatorial ingression can involve multiple events in different regions of the cortex, including the establishment of anterior-posterior polarity, the modulation of cortical deformability, the expansion and compression of the cell cortex, and forces directed towards the interior of the cell or away from the equator. In this article (which is part of the Cytokinesis series), I evaluate critically key observations on when, where and how early ingression of animal cells takes place.  相似文献   

18.
BACKGROUND: The assembly of an F-actin- and myosin-II-containing contractile ring (CR) is required for cytokinesis in eukaryotic cells. Interactions between myosin II and actin in the ring are believed to generate the force that constricts the cell into two daughters. The mechanism(s) that contribute to the spatially and temporally regulated assembly and disassembly of the CR at the cell equator are poorly understood. RESULTS: We generated an LLCPK1 epithelial cell line that stably expresses GFP-actin. Live confocal imaging showed accumulation of GFP-actin in the equatorial cortex from late anaphase through cytokinesis. Fluorescence recovery after photobleaching (FRAP) experiments showed that actin in the CR is highly dynamic (t(1/2) = 26 s). In some cells, movement of GFP-actin toward the equatorial region was observed and contributed to FRAP. Blocking actin dynamic turnover with jasplakinolide demonstrates that dynamic actin is required for CR formation and cytokinesis. To test the role of myosin II in actin turnover and transport during CR formation, we inhibited myosin light-chain kinase with ML7 and myosin II ATPase activity with blebbistatin. Inhibition of myosin light-chain phosphorylation resulted in clearance of GFP-actin from the equatorial region, a reduction in myosin II in the furrow, and inhibition of cytokinesis. Treatment with blebbistatin did not block CR formation but reduced FRAP of GFP-actin and prevented completion of cytokinesis. CONCLUSIONS: These results demonstrate that the majority of actin in the CR is highly dynamic and establish novel roles for myosin II in the retention and dynamic turnover of actin in the CR.  相似文献   

19.
《The Journal of cell biology》1990,111(5):1905-1911
The contractile ring in dividing animal cells is formed primarily through the reorganization of existing actin filaments (Cao, L.-G., and Y.-L. Wang. 1990. J. Cell Biol. 110:1089-1096), but it is not clear whether the process involves a random recruitment of diffusible actin filaments from the cytoplasm, or a directional movement of cortically associated filaments toward the equator. We have studied this question by observing the distribution of actin filaments that have been labeled with fluorescent phalloidin and microinjected into dividing normal rat kidney (NRK) cells. The labeled filaments are present primarily in the cytoplasm during prometaphase and early metaphase, but become associated extensively with the cell cortex 10-15 min before the onset of anaphase. This process is manifested both as an increase in cortical fluorescence intensity and as movements of discrete aggregates of actin filaments toward the cortex. The concentration of actin fluorescence in the equatorial region, accompanied by a decrease of fluorescence in polar regions, is detected 2-3 min after the onset of anaphase. By directly tracing the distribution of aggregates of labeled actin filaments, we are able to detect, during anaphase and telophase, movements of cortical actin filaments toward the equator at an average rate of 1.0 micron/min. Our results, combined with previous observations, suggest that the organization of actin filaments during cytokinesis probably involves an association of cytoplasmic filaments with the cortex, a movement of cortical filaments toward the cleavage furrow, and a dissociation of filaments from the equatorial cortex.  相似文献   

20.
Localized activation of Rho GTPases is essential for multiple cellular functions, including cytokinesis and formation and maintenance of cell–cell junctions. Although MgcRacGAP (Mgc) is required for spatially confined RhoA-GTP at the equatorial cortex of dividing cells, both the target specificity of Mgc''s GAP activity and the involvement of phosphorylation of Mgc at Ser-386 are controversial. In addition, Mgc''s function at cell–cell junctions remains unclear. Here, using gastrula-stage Xenopus laevis embryos as a model system, we examine Mgc''s role in regulating localized RhoA-GTP and Rac1-GTP in the intact vertebrate epithelium. We show that Mgc''s GAP activity spatially restricts accumulation of both RhoA-GTP and Rac1-GTP in epithelial cells—RhoA at the cleavage furrow and RhoA and Rac1 at cell–cell junctions. Phosphorylation at Ser-386 does not switch the specificity of Mgc''s GAP activity and is not required for successful cytokinesis. Furthermore, Mgc regulates adherens junction but not tight junction structure, and the ability to regulate adherens junctions is dependent on GAP activity and signaling via the RhoA pathway. Together these results indicate that Mgc''s GAP activity down-regulates the active populations of RhoA and Rac1 at localized regions of epithelial cells and is necessary for successful cytokinesis and cell–cell junction structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号