共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Toxigenic Vibrio cholerae in the Aquatic Environment of Mathbaria, Bangladesh 总被引:2,自引:0,他引:2 下载免费PDF全文
Munirul Alam Marzia Sultana G. Balakrish Nair R. Bradley Sack David A. Sack A. K. Siddique Afsar Ali Anwar Huq Rita R. Colwell 《Applied microbiology》2006,72(4):2849-2855
Toxigenic Vibrio cholerae, rarely isolated from the aquatic environment between cholera epidemics, can be detected in what is now understood to be a dormant stage, i.e., viable but nonculturable when standard bacteriological methods are used. In the research reported here, biofilms have proved to be a source of culturable V. cholerae, even in nonepidemic periods. Biweekly environmental surveillance for V. cholerae was carried out in Mathbaria, an area of cholera endemicity adjacent to the Bay of Bengal, with the focus on V. cholerae O1 and O139 Bengal. A total of 297 samples of water, phytoplankton, and zooplankton were collected between March and December 2004, yielding eight V. cholerae O1 and four O139 Bengal isolates. A combination of culture methods, multiplex-PCR, and direct fluorescent antibody (DFA) counting revealed the Mathbaria aquatic environment to be a reservoir for V. cholerae O1 and O139 Bengal. DFA results showed significant clumping of the bacteria during the interepidemic period for cholera, and the fluorescent micrographs revealed large numbers of V. cholerae O1 in thin films of exopolysaccharides (biofilm). A similar clumping of V. cholerae O1 was also observed in samples collected from Matlab, Bangladesh, where cholera also is endemic. Thus, the results of the study provided in situ evidence for V. cholerae O1 and O139 in the aquatic environment, predominantly as viable but nonculturable cells and culturable cells in biofilm consortia. The biofilm community is concluded to be an additional reservoir of cholera bacteria in the aquatic environment between seasonal epidemics of cholera in Bangladesh. 相似文献
3.
Cholera caused by toxigenic Vibrio cholerae is a major public health problem confronting developing countries, where outbreaks occur in a regular seasonal pattern and are particularly associated with poverty and poor sanitation. The disease is characterized by a devastating watery diarrhea which leads to rapid dehydration, and death occurs in 50 to 70% of untreated patients. Cholera is a waterborne disease, and the importance of water ecology is suggested by the close association of V. cholerae with surface water and the population interacting with the water. Cholera toxin (CT), which is responsible for the profuse diarrhea, is encoded by a lysogenic bacteriophage designated CTXΦ. Although the mechanism by which CT causes diarrhea is known, it is not clear why V. cholerae should infect and elaborate the lethal toxin in the host. Molecular epidemiological surveillance has revealed clonal diversity among toxigenic V. cholerae strains and a continual emergence of new epidemic clones. In view of lysogenic conversion by CTXΦ as a possible mechanism of origination of new toxigenic clones of V. cholerae, it appears that the continual emergence of new toxigenic strains and their selective enrichment during cholera outbreaks constitute an essential component of the natural ecosystem for the evolution of epidemic V. cholerae strains and genetic elements that mediate the transfer of virulence genes. The ecosystem comprising V. cholerae, CTXΦ, the aquatic environment, and the mammalian host offers an understanding of the complex relationship between pathogenesis and the natural selection of a pathogen. 相似文献
4.
A. K. Goel A. K. Tamrakar V. Nema D. V. Kamboj L. Singh 《World journal of microbiology & biotechnology》2005,21(6-7):973-976
Summary Environmental monitoring is important to enable effective resource management and public health protection as well as rapid
and accurate identification of Vibrio cholerae in drinking-water sources. Traditional methods employed in identification are laborious, time-consuming and practically not
viable for screening of a large number of samples. In this study, a direct cell duplex PCR assay for the detection of viable
toxigenic V. cholerae in environmental water samples was developed. In the PCR assay, two gene sequences were amplified together, one of outer membrane
protein (ompW), which is species-specific and another of cholera toxin (ctxAB). The detection limit of duplex PCR was 5 × 104 V. cholerae/reaction. Different environmental water samples were artificially spiked with V. cholerae O1 cells and filtered through a 0.22 μm membrane, and the filters enriched in alkaline peptone water for 6 h and then used directly in the duplex PCR assay. The
PCR procedure coupled with enrichment could detect as few as 1.2 c.f.u./ml in ground water, 1.2 × 102 c.f.u. ml−1 in sewer water and 1.2 × 103c.f.u. ml−1 in tap water. The assay was successfully applied directly for screening of environmental potable water samples collected
from a cholera-affected area. The proposed method is simple and can be used for environmental monitoring of toxigenic as well
as non-toxigenic V. cholerae. 相似文献
5.
《Applied and environmental microbiology》1990,56(2):581
[This corrects the article on p. 2077 in vol. 55.]. 相似文献
6.
Alam M Sultana M Nair GB Sack RB Sack DA Siddique AK Ali A Huq A Colwell RR 《Applied and environmental microbiology》2006,72(4):2849-2855
Toxigenic Vibrio cholerae, rarely isolated from the aquatic environment between cholera epidemics, can be detected in what is now understood to be a dormant stage, i.e., viable but nonculturable when standard bacteriological methods are used. In the research reported here, biofilms have proved to be a source of culturable V. cholerae, even in nonepidemic periods. Biweekly environmental surveillance for V. cholerae was carried out in Mathbaria, an area of cholera endemicity adjacent to the Bay of Bengal, with the focus on V. cholerae O1 and O139 Bengal. A total of 297 samples of water, phytoplankton, and zooplankton were collected between March and December 2004, yielding eight V. cholerae O1 and four O139 Bengal isolates. A combination of culture methods, multiplex-PCR, and direct fluorescent antibody (DFA) counting revealed the Mathbaria aquatic environment to be a reservoir for V. cholerae O1 and O139 Bengal. DFA results showed significant clumping of the bacteria during the interepidemic period for cholera, and the fluorescent micrographs revealed large numbers of V. cholerae O1 in thin films of exopolysaccharides (biofilm). A similar clumping of V. cholerae O1 was also observed in samples collected from Matlab, Bangladesh, where cholera also is endemic. Thus, the results of the study provided in situ evidence for V. cholerae O1 and O139 in the aquatic environment, predominantly as viable but nonculturable cells and culturable cells in biofilm consortia. The biofilm community is concluded to be an additional reservoir of cholera bacteria in the aquatic environment between seasonal epidemics of cholera in Bangladesh. 相似文献
7.
A novel multiplex PCR for the identification of Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus 总被引:3,自引:0,他引:3
AIM: To establish a simple multiplex polymerase chain reaction (PCR) that will identify Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus. METHODS AND RESULTS: A total of 429 Vibrio spp. from various origins were tested with the novel primers targeting toxR. The reverse primers were all designed to be species specific, while the forward primer was universal. The primers correctly identified all the V. parahaemolyticus, V. cholerae and V. vulnificus isolates tested. CONCLUSIONS: The toxR multiplex PCR works well when the initial colony morphology is known. If not, Vibrio alginolyticus might represent a diagnostic obstacle. SIGNIFICANCE AND IMPACT OF THE STUDY: The method provides a fast and reliable way of identifying the main Vibrio spp. involved in food-borne disease. The method could prove very useful for laboratories working with identification of these Vibrio spp. 相似文献
8.
Jessica Joyner David Wanless Christopher D. Sinigalliano Erin K. Lipp 《Applied and environmental microbiology》2014,80(5):1679-1683
Serratia marcescens is the etiological agent of acroporid serratiosis, a distinct form of white pox disease in the threatened coral Acropora palmata. The pathogen is commonly found in untreated human waste in the Florida Keys, which may contaminate both nearshore and offshore waters. Currently there is no direct method for detection of this bacterium in the aquatic or reef environment, and culture-based techniques may underestimate its abundance in marine waters. A quantitative real-time PCR assay was developed to detect S. marcescens directly from environmental samples, including marine water, coral mucus, sponge tissue, and wastewater. The assay targeted the luxS gene and was able to distinguish S. marcescens from other Serratia species with a reliable quantitative limit of detection of 10 cell equivalents (CE) per reaction. The method could routinely discern the presence of S. marcescens for as few as 3 CE per reaction, but it could not be reliably quantified at this level. The assay detected environmental S. marcescens in complex sewage influent samples at up to 761 CE ml−1 and in septic system-impacted residential canals in the Florida Keys at up to 4.1 CE ml−1. This detection assay provided rapid quantitative abilities and good sensitivity and specificity, which should offer an important tool for monitoring this ubiquitous pathogen that can potentially impact both human health and coral health. 相似文献
9.
Jianwei Huang Yumei Zhu Huixin Wen Jiafeng Zhang Shijie Huang Jianjun Niu Qingge Li 《Applied and environmental microbiology》2009,75(22):6981-6985
Vibrio cholerae is a natural inhabitant of the aquatic environment. However, its toxigenic strains can cause potentially life-threatening diarrhea. A quadruplex real-time PCR assay targeting four genes, the cholera toxin gene (ctxA), the hemolysin gene (hlyA), O1-specific rfb, and O139-specific rfb, was developed for detection and differentiation of O1, O139, and non-O1, non-O139 strains and for prediction of their toxigenic potential. The specificity of the assay was 100% when tested against 70 strains of V. cholerae and 31 strains of non-V. cholerae organisms. The analytical sensitivity for detection of toxigenic V. cholerae O1 and O139 was 2 CFU per reaction with cells from pure culture. When the assay was tested with inoculated water from bullfrog feeding ponds, 10 CFU/ml could reliably be detected after culture for 3 h. The assay was more sensitive than the immunochromatographic assay and culture method when tested against 89 bullfrog samples and 68 water samples from bullfrog feeding ponds. The applicability of this assay was confirmed in a case study involving 15 bullfrog samples, from which two mixtures of nontoxigenic O1 and toxigenic non-O1/non-O139 strains were detected and differentiated. These data indicate that the quadruplex real-time PCR assay can both rapidly and accurately detect/identify V. cholerae and reliably predict the toxigenic potential of strains detected.Occasional outbreaks and pandemics caused by the bacterium Vibrio cholerae indicate that cholera is still a global threat to public health (1, 2, 6, 13, 14). The disease may become life-threatening if appropriate therapy is not undertaken quickly. Of the more than 200 serogroups of V. cholerae that have been identified (28), two serogroups, O1 and O139, cause epidemic and pandemic cholera (14), whereas non-O1, non-O139 serogroups are associated only with sporadic, isolated outbreaks of diarrhea (3, 23). O1 and O139 strains are also categorized as toxin-producing and non-toxin-producing strains. The toxin-producing strains cause life-threatening secretory diarrhea, while the non-toxin-producing isolates elicit only mild diarrhea. These differences among the serogroups of V. cholerae demand rapid diagnostic tests capable of both distinguishing O1 and O139 from other serogroups and differentiating toxin-producing from nonproducing isolates (20).PCR has become a molecular alternative to culture, microscopy, and biochemical testing for the identification of bacterial species (27). Many PCR methods have been developed for characterization of serogroups (O1 and/or O139), biotypes, and the toxigenic potential of V. cholerae strains (7, 11, 15, 19, 21, 22, 24-26). However, these conventional PCR methods require gel electrophoresis for product analysis and are therefore not suitable for routine use due to the risk of carryover contamination, low throughput, and intensive labor.Real-time PCR allows detection of amplification product accumulation through fluorescence intensity changes in a closed-tube setting, which is faster and more sensitive than conventional PCR and has become increasingly popular in clinical microbiology laboratories. Moreover, when multicolor fluorophore-labeled probes and/or melting curve analysis is used, multiplex real-time PCR can be designed to simultaneously detect many different target genes in a single reaction tube (8). So far, the majority of published real-time PCR assays for V. cholerae detect no more than two genes simultaneously (4, 8, 18), which precludes their use for simultaneous serogroup and toxin status determination. Recent reports show that multiplex real-time PCR greatly improves specificity and sensitivity for the detection of V. cholerae through either melting curve analysis (9) or using differently fluorophore-labeled probes (10).In the present work, we report the development of a quadruplex real-time PCR assay that enables simultaneous serogroup differentiation and toxigenic potential detection. By using four different fluorophore-labeled probes, which target hlyA, O1-specfic rfb, O139-specific rfb, and ctxA, the quadruplex assay can reveal whether the target is an O1, O139, or non-O1/non-O139 strain and whether the bacterium detected is capable of producing toxins. We report that by alleviating primer dimer formation by use of a homotag-assisted nondimer system (HANDS) (5), we were able to retain the analytical sensitivity of uniplex PCR and successfully differentiated serogroups and toxigenic potentials from aquatic animal and environmental samples. 相似文献
10.
11.
Background
Quantitative PCR (qPCR) is a workhorse laboratory technique for measuring the concentration of a target DNA sequence with high accuracy over a wide dynamic range. The gold standard method for estimating DNA concentrations via qPCR is quantification cycle () standard curve quantification, which requires the time- and labor-intensive construction of a standard curve. In theory, the shape of a qPCR data curve can be used to directly quantify DNA concentration by fitting a model to data; however, current empirical model-based quantification methods are not as reliable as standard curve quantification.Principal Findings
We have developed a two-parameter mass action kinetic model of PCR (MAK2) that can be fitted to qPCR data in order to quantify target concentration from a single qPCR assay. To compare the accuracy of MAK2-fitting to other qPCR quantification methods, we have applied quantification methods to qPCR dilution series data generated in three independent laboratories using different target sequences. Quantification accuracy was assessed by analyzing the reliability of concentration predictions for targets at known concentrations. Our results indicate that quantification by MAK2-fitting is as reliable as standard curve quantification for a variety of DNA targets and a wide range of concentrations.Significance
We anticipate that MAK2 quantification will have a profound effect on the way qPCR experiments are designed and analyzed. In particular, MAK2 enables accurate quantification of portable qPCR assays with limited sample throughput, where construction of a standard curve is impractical. 相似文献12.
A highly sensitive and specific multiplex PCR assay for simultaneous detection of Vibrio cholerae,Vibrio parahaemolyticus and Vibrio vulnificus 总被引:1,自引:0,他引:1
S.B. Neogi N. Chowdhury M. Asakura A. Hinenoya S. Haldar S.M. Saidi K. Kogure R.J. Lara S. Yamasaki 《Letters in applied microbiology》2010,51(3):293-300
Aims: To develop an effective multiplex PCR for simultaneous and rapid detection of Vibrio cholerae, Vibrio vulnificus and Vibrio parahaemolyticus, the three most important Vibrio species that can cause devastating health hazards among human. Methods and Results: Species‐specific PCR primers were designed based on toxR gene for V. cholerae and V. parahaemolyticus, and vvhA gene for V. vulnificus. The multiplex PCR was validated with 488 Vibrio strains including 322 V. cholerae, 12 V. vulnificus, and 82 V. parahaemolyticus, 20 other Vibrio species and 17 other bacterial species associated with human diseases. It could detect the three target bacteria without any ambiguity even among closely related species. It showed good efficiency in detection of co‐existing target species in the same sample. The detection limit of all the target species was ten cells per PCR tube. Conclusions: Specificity and sensitivity of the multiplex PCR is 100% each and sufficient for simultaneous detection of these potentially pathogenic Vibrio species in clinical and environmental samples. Significance and Impact of the Study: This simple, rapid and cost‐effective method can be applicable in a prediction system to prevent disease outbreak by these Vibrio species and can be considered as an effective tool for both epidemiologist and ecologist. 相似文献
13.
14.
Liying Jiang Johan Eriksson Sandra Lage Sara Jonasson Shiva Shams Martin Mehine Leopold L. Ilag Ulla Rasmussen 《PloS one》2014,9(1)
Amyotrophic lateral sclerosis (ALS) or Lou Gehrig’s disease is a neurological disorder linked to environmental exposure to a non-protein amino acid, β-N-methylamino-L-alanine (BMAA). The only organisms reported to be BMAA-producing, are cyanobacteria – prokaryotic organisms. In this study, we demonstrate that diatoms – eukaryotic organisms – also produce BMAA. Ultra-high-performance liquid chromatography coupled with tandem mass spectrometry revealed the occurrence of BMAA in six investigated axenic diatom cultures. BMAA was also detected in planktonic field samples collected on the Swedish west coast that display an overrepresentation of diatoms relative to cyanobacteria. Given the ubiquity of diatoms in aquatic environments and their central role as primary producers and the main food items of zooplankton, the use of filter and suspension feeders as livestock fodder dramatically increases the risk of human exposure to BMAA-contaminated food. 相似文献
15.
Molecular-Beacon Multiplex Real-Time PCR Assay for Detection of Vibrio cholerae 总被引:1,自引:0,他引:1 下载免费PDF全文
A multiplex real-time PCR assay was developed using molecular beacons for the detection of Vibrio cholerae by targeting four important virulence and regulatory genes. The specificity and sensitivity of this assay, when tested with pure culture and spiked environmental water samples, were high, surpassing those of currently published PCR assays for the detection of this organism. 相似文献
16.
A multiplex real-time PCR assay was developed using molecular beacons for the detection of Vibrio cholerae by targeting four important virulence and regulatory genes. The specificity and sensitivity of this assay, when tested with pure culture and spiked environmental water samples, were high, surpassing those of currently published PCR assays for the detection of this organism. 相似文献
17.
Biochemical tests commonly used to screen for Vibrio cholerae in environmental samples were evaluated, and we found that a combination of alkaline peptone enrichment followed by streaking on thiosulfate citrate bile salts sucrose agar and testing for arginine dihydrolase activity and esculin hydrolysis was an effective rapid technique to screen for aquatic environmental V. cholerae. This technique provided 100% sensitivity and ≥70% specificity. 相似文献
18.
Meer T. Alam Thomas A. Weppelmann Ira Longini Valery Madsen Beau De Rochars John Glenn Morris Jr Afsar Ali 《PloS one》2015,10(4)
Since the identification of the first cholera case in 2010, the disease has spread in epidemic form throughout the island nation of Haiti; as of 2014, about 700,000 cholera cases have been reported, with over 8,000 deaths. While case numbers have declined, the more fundamental question of whether the causative bacterium, Vibrio cholerae has established an environmental reservoir in the surface waters of Haiti remains to be elucidated. In a previous study conducted between April 2012 and March 2013, we reported the isolation of toxigenic V. cholerae O1 from surface waters in the Ouest Department. After a second year of surveillance (April 2013 to March 2014) using identical methodology, we observed a more than five-fold increase in the number of water samples containing culturable V. cholerae O1 compared to the previous year (1.7% vs 8.6%), with double the number of sites having at least one positive sample (58% vs 20%). Both seasonal water temperatures and precipitation were significantly related to the frequency of isolation. Our data suggest that toxigenic V. cholerae O1 are becoming more common in surface waters in Haiti; while the basis for this increase is uncertain, our findings raise concerns that environmental reservoirs are being established. 相似文献
19.
数据归一化技术对研究结果的分析具有重要的作用.在定量PCR实验中,通常利用稳定表达的看家基因作为实验数据归一化的内参,但最近的研究表明,这些看家基因的表达量在不同的生理病理过程中也表现出显著的变化,不适合作为数据归一化处理的基准.针对这一问题,提出一种新的数据处理技术,利用单细胞归一化方法(percellome),对定量PCR检测miRNA表达的数据进行处理,显著提高了数据处理的准确性.以8周龄/40周龄小鼠脑为实验材料,选择14种microRNA的表达情况进行了检测.在研究中,将3种不同拷贝数的人工合成的RNA片段(spike RNA)作为内参加入到样品中,用于microRNA表达检测的归一化基准.研究发现,未经处理的microRNA单细胞拷贝数的变化范围为2.0×105~4.3×105,而经单细胞归一处理,上述表达变化范围为2到26倍.该项研究还发现,看家基因U6 ncRNA和5S rRNA的表达水平存在显著的变化,在以基因组DNA为归一化基准时,其表达量变化为1.5和4.8倍,而在以RNA水平为归一化基准时,其表达量变化为5.8和3.8倍,表明这些基因不适合作为数据处理的基准.据此,为microRNA的定量研究提供了一种新的、可靠的归一化方案. 相似文献
20.
Transmissible factors encoding production of lacunae (L factors) were demonstrated in a non-O1 Vibrio cholerae and a Vibrio sp. of recent environmental origin. Lacunae were produced in lawns of non-O1 V. cholerae indicator strains under the same assay conditions as those where lacunae were produced by the well characterized P fertility plasmid of V. cholerae O1 and the V fertility factor found in a non-cholera vibrio strain. The origin of the lacunae produced by strains harbouring the V and L factors was examined. No vibriocin or phage activity was found in culture supernates or in lacunae produced by the strains, suggesting that, as in the case of the P plasmid, the lacunae probably represent sites of active mating. Unlike the P plasmid, neither the Vn or L factor could be detected or isolated by conventional plasmid techniques. 相似文献