首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supramolecular organization of enzymes is proposed to orchestrate metabolic complexity and help channel intermediates in different pathways. Phenylpropanoid metabolism has to direct up to 30% of the carbon fixed by plants to the biosynthesis of lignin precursors. Effective coupling of the enzymes in the pathway thus seems to be required. Subcellular localization, mobility, protein–protein, and protein–membrane interactions of four consecutive enzymes around the main branch point leading to lignin precursors was investigated in leaf tissues of Nicotiana benthamiana and cells of Arabidopsis thaliana. CYP73A5 and CYP98A3, the two Arabidopsis cytochrome P450s (P450s) catalyzing para- and meta-hydroxylations of the phenolic ring of monolignols were found to colocalize in the endoplasmic reticulum (ER) and to form homo- and heteromers. They moved along with the fast remodeling plant ER, but their lateral diffusion on the ER surface was restricted, likely due to association with other ER proteins. The connecting soluble enzyme hydroxycinnamoyltransferase (HCT), was found partially associated with the ER. Both HCT and the 4-coumaroyl-CoA ligase relocalized closer to the membrane upon P450 expression. Fluorescence lifetime imaging microscopy supports P450 colocalization and interaction with the soluble proteins, enhanced by the expression of the partner proteins. Protein relocalization was further enhanced in tissues undergoing wound repair. CYP98A3 was the most effective in driving protein association.  相似文献   

2.
The system of base excision repair (BER) ensures correction of the most abundant DNA damages in mammalian cells and plays an important role in maintaining genome stability. Enzymes and protein factors participate in the multistage BER in a coordinated fashion, which ensures repair efficiency. The suggested coordination mechanisms are based on formation of protein complexes stabilized via either direct or indirect DNA-mediated interactions. The results of investigation of direct interactions of the proteins participating in BER with each other and with other proteins are outlined in this review. The known protein partners and sites responsible for their interaction are presented for the main participants as well as quantitative characteristics of their affinity. Information on the mechanisms of regulation of protein–protein interactions mediated by DNA intermediates and posttranslational modification is presented. It can be suggested based on all available data that the multiprotein complexes are formed on chromatin independent of the DNA damage with the help of key regulators of the BER process – scaffold protein XRCC1 and poly(ADP-ribose) polymerase 1. The composition of multiprotein complexes changes dynamically depending on the DNA damage and the stage of BER process.  相似文献   

3.
4.
5.
Protein unfolding is an important step in several cellular processes, most interestingly protein degradation by ATP-dependent proteases and protein translocation across some membranes. Unfolding can be catalyzed when the unfoldases change the unfolding pathway of substrate proteins by pulling at their polypeptide chains. The resistance of a protein to unraveling during these processes is not determined by the protein's stability against global unfolding, as measured by temperature or solvent denaturation in vitro. Instead, resistance to unfolding is determined by the local structure that the unfoldase encounters first as it follows the substrate's polypeptide chain from the targeting signal. As unfolding is a necessary step in protein degradation and translocation, the susceptibility to unfolding of substrate proteins contributes to the specificity of these important cellular processes.  相似文献   

6.
Protein–protein interactions (PPIs) are fundamental to the structure and function of protein complexes. Resolving the physical contacts between proteins as they occur in cells is critical to uncovering the molecular details underlying various cellular activities. To advance the study of PPIs in living cells, we have developed a new in vivo cross-linking mass spectrometry platform that couples a novel membrane-permeable, enrichable, and MS-cleavable cross-linker with multistage tandem mass spectrometry. This strategy permits the effective capture, enrichment, and identification of in vivo cross-linked products from mammalian cells and thus enables the determination of protein interaction interfaces. The utility of the developed method has been demonstrated by profiling PPIs in mammalian cells at the proteome scale and the targeted protein complex level. Our work represents a general approach for studying in vivo PPIs and provides a solid foundation for future studies toward the complete mapping of PPI networks in living systems.Protein–protein interactions (PPIs)1 play a key role in defining protein functions in biological systems. Aberrant PPIs can have drastic effects on biochemical activities essential to cell homeostasis, growth, and proliferation, and thereby lead to various human diseases (1). Consequently, PPI interfaces have been recognized as a new paradigm for drug development. Therefore, mapping PPIs and their interaction interfaces in living cells is critical not only for a comprehensive understanding of protein function and regulation, but also for describing the molecular mechanisms underlying human pathologies and identifying potential targets for better therapeutics.Several strategies exist for identifying and mapping PPIs, including yeast two-hybrid, protein microarray, and affinity purification mass spectrometry (AP-MS) (25). Thanks to new developments in sample preparation strategies, mass spectrometry technologies, and bioinformatics tools, AP-MS has become a powerful and preferred method for studying PPIs at the systems level (69). Unlike other approaches, AP-MS experiments allow the capture of protein interactions directly from their natural cellular environment, thus better retaining native protein structures and biologically relevant interactions. In addition, a broader scope of PPI networks can be obtained with greater sensitivity, accuracy, versatility, and speed. Despite the success of this very promising technique, AP-MS experiments can lead to the loss of weak/transient interactions and/or the reorganization of protein interactions during biochemical manipulation under native purification conditions. To circumvent these problems, in vivo chemical cross-linking has been successfully employed to stabilize protein interactions in native cells or tissues prior to cell lysis (1016). The resulting covalent bonds formed between interacting partners allow affinity purification under stringent and fully denaturing conditions, consequently reducing nonspecific background while preserving stable and weak/transient interactions (1216). Subsequent mass spectrometric analysis can reveal not only the identities of interacting proteins, but also cross-linked amino acid residues. The latter provides direct molecular evidence describing the physical contacts between and within proteins (17). This information can be used for computational modeling to establish structural topologies of proteins and protein complexes (1722), as well as for generating experimentally derived protein interaction network topology maps (23, 24). Thus, cross-linking mass spectrometry (XL-MS) strategies represent a powerful and emergent technology that possesses unparalleled capabilities for studying PPIs.Despite their great potential, current XL-MS studies that have aimed to identify cross-linked peptides have been mostly limited to in vitro cross-linking experiments, with few successfully identifying protein interaction interfaces in living cells (24, 25). This is largely because XL-MS studies remain challenging due to the inherent difficulty in the effective MS detection and accurate identification of cross-linked peptides, as well as in unambiguous assignment of cross-linked residues. In general, cross-linked products are heterogeneous and low in abundance relative to non-cross-linked products. In addition, their MS fragmentation is too complex to be interpreted using conventional database searching tools (17, 26). It is noted that almost all of the current in vivo PPI studies utilize formaldehyde cross-linking because of its membrane permeability and fast kinetics (1016). However, in comparison to the most commonly used amine reactive NHS ester cross-linkers, identification of formaldehyde cross-linked peptides is even more challenging because of its promiscuous nonspecific reactivity and extremely short spacer length (27). Therefore, further developments in reagents and methods are urgently needed to enable simple MS detection and effective identification of in vivo cross-linked products, and thus allow the mapping of authentic protein contact sites as established in cells, especially for protein complexes.Various efforts have been made to address the limitations of XL-MS studies, resulting in new developments in bioinformatics tools for improved data interpretation (2832) and new designs of cross-linking reagents for enhanced MS analysis of cross-linked peptides (24, 3339). Among these approaches, the development of new cross-linking reagents holds great promise for mapping PPIs on the systems level. One class of cross-linking reagents containing an enrichment handle have been shown to allow selective isolation of cross-linked products from complex mixtures, boosting their detectability by MS (3335, 4042). A second class of cross-linkers containing MS-cleavable bonds have proven to be effective in facilitating the unambiguous identification of cross-linked peptides (3639, 43, 44), as the resulting cross-linked products can be identified based on their characteristic and simplified fragmentation behavior during MS analysis. Therefore, an ideal cross-linking reagent would possess the combined features of both classes of cross-linkers. To advance the study of in vivo PPIs, we have developed a new XL-MS platform based on a novel membrane-permeable, enrichable, and MS-cleavable cross-linker, Azide-A-DSBSO (azide-tagged, acid-cleavable disuccinimidyl bis-sulfoxide), and multistage tandem mass spectrometry (MSn). This new XL-MS strategy has been successfully employed to map in vivo PPIs from mammalian cells at both the proteome scale and the targeted protein complex level.  相似文献   

7.
8.
It remains extraordinarily challenging to elucidate endogenous protein-protein interactions and proximities within the cellular milieu. The dynamic nature and the large range of affinities of these interactions augment the difficulty of this undertaking. Among the most useful tools for extracting such information are those based on affinity capture of target bait proteins in combination with mass spectrometric readout of the co-isolated species. Although highly enabling, the utility of affinity-based methods is generally limited by difficulties in distinguishing specific from nonspecific interactors, preserving and isolating all unique interactions including those that are weak, transient, or rapidly exchanging, and differentiating proximal interactions from those that are more distal. Here, we have devised and optimized a set of methods to address these challenges. The resulting pipeline involves flash-freezing cells in liquid nitrogen to preserve the cellular environment at the moment of freezing; cryomilling to fracture the frozen cells into intact micron chunks to allow for rapid access of a chemical reagent and to stabilize the intact endogenous subcellular assemblies and interactors upon thawing; and utilizing the high reactivity of glutaraldehyde to achieve sufficiently rapid stabilization at low temperatures to preserve native cellular interactions. In the course of this work, we determined that relatively low molar ratios of glutaraldehyde to reactive amines within the cellular milieu were sufficient to preserve even labile and transient interactions. This mild treatment enables efficient and rapid affinity capture of the protein assemblies of interest under nondenaturing conditions, followed by bottom-up MS to identify and quantify the protein constituents. For convenience, we have termed this approach Stabilized Affinity Capture Mass Spectrometry. Here, we demonstrate that Stabilized Affinity Capture Mass Spectrometry allows us to stabilize and elucidate local, distant, and transient protein interactions within complex cellular milieux, many of which are not observed in the absence of chemical stabilization.Insights into many cellular processes require detailed information about interactions between the participating proteins. However, the analysis of such interactions can be challenging because of the often-diverse physicochemical properties and the abundances of the constituent proteins, as well as the sometimes wide range of affinities and complex dynamics of the interactions. One of the key challenges has been acquiring information concerning transient, low affinity interactions in highly complex cellular milieux (3, 4).Methods that allow elucidation of such information include co-localization microscopy (5), fluorescence protein Förster resonance energy transfer (4), immunoelectron microscopy (5), yeast two-hybrid (6), and affinity capture (7, 8). Among these, affinity capture (AC)1 has the unique potential to detect all specific in vivo interactions simultaneously, including those that interact both directly and indirectly. In recent times, the efficacy of such affinity isolation experiments has been greatly enhanced through the use of sensitive modern mass spectrometric protein identification techniques (9). Nevertheless, AC suffers from several shortcomings. These include the problem of 1) distinguishing specific from nonspecific interactors (10, 11); 2) preserving and isolating all unique interactions including those that are weak and/or transient, as well as those that exchange rapidly (10, 12, 13); and 3) differentiating proximal from more distant interactions (14).We describe here an approach to address these issues, which makes use of chemical stabilization of protein assemblies in the complex cellular milieu prior to AC. Chemical stabilization is an emerging technique for stabilizing and elucidating protein associations both in vitro (1520) and in vivo (3, 12, 14, 2129), with mass spectrometric (MS) readout of the AC proteins and their connectivities. Such chemical stabilization methods are indeed well-established and are often used in electron microscopy for preserving complexes and subcellular structures both in the cellular milieu (3) and in purified complexes (30, 31), wherein the most reliable, stable, and established stabilization reagents is glutaraldehyde. Recently, glutaraldehyde has been applied in the “GraFix” protocol in which purified protein complexes are subjected to centrifugation through a density gradient that also contains a gradient of glutaraldehyde (30, 31), allowing for optimal stabilization of authentic complexes and minimization of nonspecific associations and aggregation. GraFix has also been combined with mass spectrometry on purified complexes bound to EM grids to obtain a compositional analysis of the complexes (32), thereby raising the possibility that glutaraldehyde can be successfully utilized in conjunction with AC in complex cellular milieux directly.In this work, we present a robust pipeline for determining specific protein-protein interactions and proximities from cellular milieux. The first steps of the pipeline involve the well-established techniques of flash freezing the cells of interest in liquid nitrogen and cryomilling, which have been known for over a decade (33, 34) to preserve the cellular environment, as well as having shown outstanding performance when used in analysis of macromolecular interactions in yeast (3539), bacterial (40, 41), trypanosome (42), mouse (43), and human (4447) systems. The resulting frozen powder, composed of intact micron chunks of cells that have great surface area and outstanding solvent accessibility, is well suited for rapid low temperature chemical stabilization using glutaraldehyde. We selected glutaraldehyde for our procedure based on the fact that it is a very reactive stabilizing reagent, even at lower temperatures, and because it has already been shown to stabilize enzymes in their functional state (4850). We employed highly efficient, rapid, single stage affinity capture (36, 51) for isolation and bottom-up MS for analysis of the macromolecular assemblies of interest (5254). For convenience, we have termed this approach Stabilized Affinity-Capture Mass Spectrometry (SAC-MS).  相似文献   

9.
The γ-secretase complex is responsible for intramembrane processing of over 60 substrates and is involved in Notch signaling as well as in the generation of the amyloid β-peptide (Aβ). Aggregated forms of Aβ have a pathogenic role in Alzheimer disease and, thus, reducing the Aβ levels by inhibiting γ-secretase is a possible treatment strategy for Alzheimer disease. Regrettably, clinical trials have shown that inhibition of γ-secretase results in Notch-related side effects. Therefore, it is of great importance to find ways to inhibit amyloid precursor protein (APP) processing without disturbing vital signaling pathways such as Notch. Nicastrin (Nct) is part of the γ-secretase complex and has been proposed to be involved in substrate recognition and selection. We have investigated how the four evenly spaced and conserved cysteine residues in the Nct ectodomain affect APP and Notch processing. We mutated these cysteines to serines and analyzed them in cells lacking endogenous Nct. We found that two mutants, C213S (C2) and C230S (C3), differentially affected APP and Notch processing. Both the formation of Aβ and the intracellular domain of amyloid precursor protein (AICD) were reduced, whereas the production of Notch intracellular domain (NICD) was maintained on a high level, although C230S (C3) showed impaired complex assembly. Our data demonstrate that single residues in a γ-secretase component besides presenilin are able to differentially affect APP and Notch processing.  相似文献   

10.
11.
Alterations occur within distal neuronal compartments, including axons and synapses, during the course of neurodegenerative diseases such as Parkinson’s disease (PD). These changes could hold important implications for the functioning of neural networks, especially since research studies have shown a loss of dendritic spines locating to medium spiny projection neurons and impaired axonal transport in PD-affected brains. However, despite ever-increasing awareness of the vulnerability of synapses and axons, inadequate understanding of the independent mechanisms regulating non-somatic neurodegeneration prevails. This has resulted in limited therapeutic strategies capable of targeting these distinct cellular compartments. Deregulated protein synthesis, folding and degrading proteins, and protein quality-control systems have repeatedly been linked with morphological and functional alterations of synapses in the PD-affected brains. Here, we review current understanding concerning the proteins involved in structural and functional changes that affect synaptic contact-points in PD. The collection of studies discussed emphasizes the need for developing therapeutics aimed at deregulated protein synthesis and degradation pathways operating at axonal and dendritic synapses for preserving “normal” circuitry and function, for as long as possible.  相似文献   

12.
The proposal that coupled folding to binding is not an obligatory mechanism for intrinsically disordered (ID) proteins was put forward 10 years ago. The notion of fuzziness implies that conformational heterogeneity can be maintained upon interactions of ID proteins, which has a functional impact either on regulated assembly or activity of the corresponding complexes. Here I review how the concept has evolved in the past decade, via increasing experimental data providing insights into the mechanisms, pathways and regulatory modes. The effects of structural diversity and transient contacts on protein assemblies have been collected and systematically analyzed (Fuzzy Complexes Database, http://protdyn-database.org). Fuzziness has also been exploited as a framework to decipher molecular organization of higher-order protein structures. Quantification of conformational heterogeneity opens exciting future perspectives for drug discovery from small molecule–ID protein interactions to supramolecular assemblies.  相似文献   

13.
14.
As essential components of the molecular machine assembling heterochromatin in eukaryotes, HP1 (Heterochromatin Protein 1) proteins are key regulators of genome function. While several high-resolution structures of the two globular regions of HP1, chromo and chromoshadow domains, in their free form or in complex with recognition-motif peptides are available, less is known about the conformational behavior of the full-length protein. Here, we used NMR spectroscopy in combination with small angle X-ray scattering and dynamic light scattering to characterize the dynamic and structural properties of full-length human HP1β (hHP1β) in solution. We show that the hinge region is highly flexible and enables a largely unrestricted spatial search by the two globular domains for their binding partners. In addition, the binding pockets within the chromo and chromoshadow domains experience internal dynamics that can be useful for the versatile recognition of different binding partners. In particular, we provide evidence for the presence of a distinct structural propensity in free hHP1β that prepares a binding-competent interface for the formation of the intermolecular β-sheet with methylated histone H3. The structural plasticity of hHP1β supports its ability to bind and connect a wide variety of binding partners in epigenetic processes.  相似文献   

15.
Protein 4.1 G localizes in rodent microglia   总被引:2,自引:2,他引:0  
Although it was reported that protein 4.1 G, a cytoskeletal protein characterized by its general expression in the body, interacts with some signal transduction molecules in the central nervous system (CNS), its distribution and significance in vivo remained to be elucidated. In the present study, we have identified 4.1 G-positive cells in the rodent CNS, and demonstrated its immunolocalization in the developing mouse CNS. In the rodent CNS, 4.1 G was colocalized with markers for microglia, such as CD45, OX-42 and ionized calcium-binding adapter molecule 1 (Iba1), but not with markers for neuronal or other glial cells. Additionally, colocalization of 4.1 G and A1 adenosine receptor was observed in the mouse cerebrum. In a mixed glial culture, most OX-42-positive microglia were positive for 4.1 G, and 4.1 G isoforms of the same molecular weight as in the rat brain were expressed in cultured microglia, where 4.1 G mRNA was detected by RT-PCR. In the developing mouse cerebral cortex, 4.1 G was detected in immature microglia, which were positive for Iba1. These results indicate that 4.1 G in the CNS is mainly distributed in microglia in vivo. Considering the interactions between 4.1 G and the signal transduction molecules, putative roles have been propsed for 4.1 G in microglial functions in the CNS.  相似文献   

16.
The cellular prion protein, encoded by the gene Prnp, has been reported to be a receptor of β-amyloid. Their interaction is mandatory for neurotoxic effects of β-amyloid oligomers. In this study, we aimed to explore whether the cellular prion protein participates in the spreading of α-synuclein. Results demonstrate that Prnp expression is not mandatory for α-synuclein spreading. However, although the pathological spreading of α-synuclein can take place in the absence of Prnp, α-synuclein expanded faster in PrPC-overexpressing mice. In addition, α-synuclein binds strongly on PrPC-expressing cells, suggesting a role in modulating the effect of α-synuclein fibrils.  相似文献   

17.
18.
The characterization of the interacting behaviors of complex biological systems is a primary objective in protein–protein network analysis and computational biology. In this paper we present FunMod, an innovative Cytoscape version 2.8 plugin that is able to mine undirected protein–protein networks and to infer sub-networks of interacting proteins intimately correlated with relevant biological pathways. This plugin may enable the discovery of new pathways involved in diseases. In order to describe the role of each protein within the relevant biological pathways, FunMod computes and scores three topological features of the identified sub-networks. By integrating the results from biological pathway clustering and topological network analysis, FunMod proved to be useful for the data interpretation and the generation of new hypotheses in two case studies.  相似文献   

19.
Lysine methylation is a key regulator of protein–protein binding. The amine group of lysine can accept up to three methyl groups, and experiments show that protein–protein binding free energies are sensitive to the extent of methylation. These sensitivities have been rationalized in terms of chemical and structural features present in the binding pockets of methyllysine binding domains. However, understanding their specific roles requires an energetic analysis. Here we propose a theoretical framework to combine quantum and molecular mechanics methods, and compute the effect of methylation on protein–protein binding free energies. The advantages of this approach are that it derives contributions from all local non-trivial effects of methylation on induction, polarizability and dispersion directly from self-consistent electron densities, and at the same time determines contributions from well-characterized hydration effects using a computationally efficient classical mean field method. Limitations of the approach are discussed, and we note that predicted free energies of fourteen out of the sixteen cases agree with experiment. Critical assessment of these cases leads to the following overarching principles that drive methylation-state recognition by protein domains. Methylation typically reduces the pairwise interaction between proteins. This biases binding toward lower methylated states. Simultaneously, however, methylation also makes it easier to partially dehydrate proteins and place them in protein–protein complexes. This latter effect biases binding in favor of higher methylated states. The overall effect of methylation on protein–protein binding depends ultimately on the balance between these two effects, which is observed to be tuned via several combinations of local features.  相似文献   

20.
By the yeast two-hybrid screening of a rat brain cDNA library with the regulatory domain of protein kinase C ζ (PKCζ) as a bait, we have cloned a gene coding for a novel PKCζ-interacting protein homologous to the Caenorhabditis elegans UNC-76 protein involved in axonal outgrowth and fasciculation. The protein designated FEZ1 (fasciculation and elongation protein zeta-1) consisting of 393 amino acid residues shows a high Asp/Glu content and contains several regions predicted to form amphipathic helices. Northern blot analysis has revealed that FEZ1 mRNA is abundantly expressed in adult rat brain and throughout the developmental stages of mouse embryo. By the yeast two-hybrid assay with various deletion mutants of PKC, FEZ1 was shown to interact with the NH2-terminal variable region (V1) of PKCζ and weakly with that of PKCε. In the COS-7 cells coexpressing FEZ1 and PKCζ, FEZ1 was present mainly in the plasma membrane, associating with PKCζ and being phosphorylated. These results indicate that FEZ1 is a novel substrate of PKCζ. When the constitutively active mutant of PKCζ was used, FEZ1 was found in the cytoplasm of COS-7 cells. Upon treatment of the cells with a PKC inhibitor, staurosporin, FEZ1 was translocated from the cytoplasm to the plasma membrane, suggesting that the cytoplasmic translocation of FEZ1 is directly regulated by the PKCζ activity. Although expression of FEZ1 alone had no effect on PC12 cells, coexpression of FEZ1 and constitutively active PKCζ stimulated the neuronal differentiation of PC12 cells. Combined with the recent finding that a human FEZ1 protein is able to complement the function of UNC-76 necessary for normal axonal bundling and elongation within axon bundles in the nematode, these results suggest that FEZ1 plays a crucial role in the axon guidance machinery in mammals by interacting with PKCζ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号