首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex hexaploid wheat genome offers many challenges for genomics research. Expressed sequence tags facilitate the analysis of gene-coding regions and provide a rich source of molecular markers for mapping and comparison with model organisms. The objectives of this study were to construct a high-density EST chromosome bin map of wheat homoeologous group 2 chromosomes to determine the distribution of ESTs, construct a consensus map of group 2 ESTs, investigate synteny, examine patterns of duplication, and assess the colinearity with rice of ESTs assigned to the group 2 consensus bin map. A total of 2600 loci generated from 1110 ESTs were mapped to group 2 chromosomes by Southern hybridization onto wheat aneuploid chromosome and deletion stocks. A consensus map was constructed of 552 ESTs mapping to more than one group 2 chromosome. Regions of high gene density in distal bins and low gene density in proximal bins were found. Two interstitial gene-rich islands flanked by relatively gene-poor regions on both the short and long arms and having good synteny with rice were discovered. The map locations of two ESTs indicated the possible presence of a small pericentric inversion on chromosome 2B. Wheat chromosome group 2 was shown to share syntenous blocks with rice chromosomes 4 and 7.  相似文献   

2.
A high-density consensus map of A and B wheat genomes   总被引:1,自引:0,他引:1  
A durum wheat consensus linkage map was developed by combining segregation data from six mapping populations. All of the crosses were derived from durum wheat cultivars, except for one accession of T. ssp. dicoccoides. The consensus map was composed of 1,898 loci arranged into 27 linkage groups covering all 14 chromosomes. The length of the integrated map and the average marker distance were 3,058.6 and 1.6?cM, respectively. The order of the loci was generally in agreement with respect to the individual maps and with previously published maps. When the consensus map was aligned to the deletion bin map, 493 markers were assigned to specific bins. Segregation distortion was found across many durum wheat chromosomes, with a higher frequency for the B genome. This high-density consensus map allowed the scanning of the genome for chromosomal rearrangements occurring during the wheat evolution. Translocations and inversions that were already known in literature were confirmed, and new putative rearrangements are proposed. The consensus map herein described provides a more complete coverage of the durum wheat genome compared with previously developed maps. It also represents a step forward in durum wheat genomics and an essential tool for further research and studies on evolution of the wheat genome.  相似文献   

3.
Agropyron cristatum (2n = 4x = 28, PPPP) possesses potentially valuable traits that could be used in wheat (Triticum aestivum) improvement through interspecific hybridization. Homoeologous pairing between wheat chromosomes and P chromosomes added to wheat in a set of wheat - A. cristatum addition lines was assessed. First, the Ph-suppressing effect of P chromosomes (except 7P) was analyzed. It was concluded that this system is polygenic with no major gene, and consequently, has no prospect in the transfer of alien genes from wild relatives. In a second step, the potential of the deletion ph1b of the Ph1 gene for inducing P-ABD pairing was evaluated. Allosyndetic associations between P and ABD genomes are very rare. This very low level of pairing is likely due to divergence in the repeated sequences between Agropyron and wheat genomes. Development of translocation lines using ionizing radiation seems to be a more suitable technique than homoeologous recombination to exploit the A. cristatum genome in wheat improvement.  相似文献   

4.
The objectives of this study were to develop a high-density chromosome bin map of homoeologous group 7 in hexaploid wheat (Triticum aestivum L.), to identify gene distribution in these chromosomes, and to perform comparative studies of wheat with rice and barley. We mapped 2148 loci from 919 EST clones onto group 7 chromosomes of wheat. In the majority of cases the numbers of loci were significantly lower in the centromeric regions and tended to increase in the distal regions. The level of duplicated loci in this group was 24% with most of these loci being localized toward the distal regions. One hundred nineteen EST probes that hybridized to three fragments and mapped to the three group 7 chromosomes were designated landmark probes and were used to construct a consensus homoeologous group 7 map. An additional 49 probes that mapped to 7AS, 7DS, and the ancestral translocated segment involving 7BS also were designated landmarks. Landmark probe orders and comparative maps of wheat, rice, and barley were produced on the basis of corresponding rice BAC/PAC and genetic markers that mapped on chromosomes 6 and 8 of rice. Identification of landmark ESTs and development of consensus maps may provide a framework of conserved coding regions predating the evolution of wheat genomes.  相似文献   

5.
Summary Genetic maps of chromosomes 3A, 3B and 3D of wheat and 3R of rye were developed using 22 DNA probes and two isozyme marker systems. Analysis of the 49 loci mapped showed extreme clustering around the centromere in all four maps, with large gaps in the distal chromosome regions, which is interpreted as being due to strong localisation of recombination towards the ends of the wheat and rye chromosomes. In the centromeric regions gene orders are highly conserved between the three wheat genomes and the rye genome. However, the unpredictable behaviour of the DNA clones that map in distal chromosome locations may indicate that the genomes are diverging most rapidly in the regions of higher recombination. A comparison of cDNA and genomic probes showed the latter to be much more efficient for revealing RFLP. Some classes of gDNA clones, i.e. chromosome-specific sequences and those hybridizing in a non-homoeologous manner, were seen to be most polymorphic. Correlations between map locations and RFLP levels showed no clear relationship. In addition to anonymous DNA clones, the locations of known function clones, sedoheptulose-1,7-bisphosphatase (XSbp), carboxypeptidase I (XCxp1) and a bZIP protein (XEmbp), were ascertained along with those for two isozyme loci, Mal-1 and Est-5.  相似文献   

6.
7.
We constructed high-density deletion bin maps of wheat chromosomes 5A, 5B, and 5D, including 2338 loci mapped with 1052 EST probes and 217 previously mapped loci (total 2555 loci). This information was combined to construct a consensus chromosome bin map of group 5 including 24 bins. A relatively higher number of loci were mapped on chromosome 5B (38%) compared to 5A (34%) and 5D (28%). Differences in the levels of polymorphism among the three chromosomes were partially responsible for these differences. A higher number of duplicated loci was found on chromosome 5B (42%). Three times more loci were mapped on the long arms than on the short arms, and a significantly higher number of probes, loci, and duplicated loci were mapped on the distal halves than on the proximal halves of the chromosome arms. Good overall colinearity was observed among the three homoeologous group 5 chromosomes, except for the previously known 5AL/4AL translocation and a putative small pericentric inversion in chromosome 5A. Statistically significant colinearity was observed between low-copy-number ESTs from wheat homoeologous group 5 and rice chromosomes 12 (88 ESTs), 9 (72 ESTs), and 3 (84 ESTs).  相似文献   

8.
9.
Bread wheat (Triticum aestivum) is one of the most important crops worldwide. However, because of its large, hexaploid, highly repetitive genome it is a challenge to develop efficient means for molecular analysis and genetic improvement in wheat. To better understand the composition and molecular evolution of the hexaploid wheat homoeologous genomes and to evaluate the potential of BAC-end sequences (BES) for marker development, we have followed a chromosome-specific strategy and generated 11 Mb of random BES from chromosome 3B, the largest chromosome of bread wheat. The sequence consisted of about 86% of repetitive elements, 1.2% of coding regions, and 13% remained unknown. With 1.2% of the sequence length corresponding to coding sequences, 6000 genes were estimated for chromosome 3B. New repetitive sequences were identified, including a Triticineae-specific tandem repeat (Fat) that represents 0.6% of the B-genome and has been differentially amplified in the homoeologous genomes before polyploidization. About 10% of the BES contained junctions between nested transposable elements that were used to develop chromosome-specific markers for physical and genetic mapping. Finally, sequence comparison with 2.9 Mb of random sequences from the D-genome of Aegilops tauschii suggested that the larger size of the B-genome is due to a higher content in repetitive elements. It also indicated which families of transposable elements are mostly responsible for differential expansion of the homoeologous wheat genomes during evolution. Our data demonstrate that BAC-end sequencing from flow-sorted chromosomes is a powerful tool for analysing the structure and evolution of polyploid and highly repetitive genomes.  相似文献   

10.
The definition of haplotype blocks of single-nucleotide polymorphisms (SNPs) has been proposed so that the haplotypes can be used as markers in association studies and to efficiently describe human genetic variation. The International Haplotype Map (HapMap) project to construct a comprehensive catalog of haplotypic variation in humans is underway. However, a number of factors have already been shown to influence the definition of blocks, including the population studied and the sample SNP density. Here, we examine the effect that marker selection has on the definition of blocks and the pattern of haplotypes by using comparable but complementary SNP sets and a number of block definition methods in various genomic regions and populations that were provided by the Encyclopedia of DNA Elements (ENCODE) project. We find that the chosen SNP set has a profound effect on the block-covered sequence and block borders, even at high marker densities. Our results question the very concept of discrete haplotype blocks and the possibility of generalizing block findings from the HapMap project. We comparatively apply the block-free tagging-SNP approach and discuss both the haplotype approach and the tagging-SNP approach as means to efficiently catalog genetic variation.  相似文献   

11.
12.
13.
14.
We report the results of chromosome maps of wheat homoeologous chromosomes 4A, 4B, and 4D using 40 RFLP markers and 39 homozygous deletion lines. Deletion breakpoints divide the chromosomes into 45 subarm intervals with 32 intervals distinguished by molecular markers. The chromosome maps confirm the homoeology of arms 4AS to 4BL and 4DL, and 4AL to 4BS and 4DS. The chromosome map of 4A reveals novel information concerning the 4AL-5AL-7BS cyclical translocation. The presence of homoeologous group-4 long-arm markers, Xksu G10 and Xpsr 1051, intervening between the translocated 5AL and 7BS chromosome segments in 4AL suggests that the translocation events are more complex than was earlier believed. Chromosome maps confirm a pericentric inversion in Chinese Spring chromosome 4B. The consensus chromosome map is compared to the genetic map of wheat to construct a cytogenetic ladder-map (CLM). The CLM reveals an unequal distribution of recombination along the length of the chromosome arms. Recombination is highest in the distal half, and low in the proximal half, of the chromosome arms.  相似文献   

15.
We derive a map of protein interactions in the parasite Plasmodium falciparum from conserved interactions in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and Escherichia coli and pool them with experimental interaction data. The application of a clique‐percolation algorithm allows us to find overlapping clusters, strongly correlated with yeast specific conserved protein complexes. Such clusters contain core activities that govern gene expression, largely dominated by components of protein production and degradation processes as well as RNA metabolism. A critical role of protein hubs in the interactome of P. falciparum is supported by their appearance in multiple clusters and the tendencies of their interactions to reach into many distinct protein clusters. Parasite proteins with a human ortholog tend to appear in single complexes. Annotating each protein with the stage where it is maximally expressed we observe a high level of cluster integrity in the ring stage. While we find no signal in the trophozoite phase, expression patterns are reversed in the schizont phase, implying a preponderance of parasite specific functions in this late, invasive schizont stage. As such, the inference of potential protein interactions and their analysis contributes to our understanding of the parasite, indicating basic pathways and processes as unique targets for therapeutic intervention.  相似文献   

16.
Irregular patterns of transgene silencing in allohexaploid oat   总被引:7,自引:0,他引:7  
An irregular pattern of transgene silencing was revealed in expression and inheritance studies conducted over multiple generations following transgene introduction by microprojectile bombardment of allohexaploid cultivated oat (Avena sativa L.). Expression of two transgenes, bar and uidA, delivered on the same plasmid was investigated in 23 transgenic oat lines. Twenty-one transgenic lines, each derived from an independently selected transformed tissue culture, showed expression of both bar and uidA while two lines expressed only bar. The relationship of the transgenic phenotypes to the presence of the transgenes in the study was determined using (1) phenotypic scoring combined with Southern blot analyses of progeny, (2) coexpression of the two transgenic phenotypes since the two transgenes always cosegregated, and (3) reactivation of a transgenic phenotype in self-pollinated progenies of transgenic plants that did not exhibit a transgenic phenotype. Transgene silencing was observed in 19 of the 23 transgenic lines and resulted in distorted segregation of transgenic phenotypes in 10 lines. Silencing and inheritance distortions were irregular and unpredictable. They were often reversible in a subsequent generation of self-pollinated progeny and abnormally segregating progenies were as likely to trace back to parents that exhibited normal segregation in a previous generation as to parents showing segregation distortions. Possible causes of the irregular patterns of transgene silencing are discussed.  相似文献   

17.
18.
19.
20.

Key message

A cytogenetic map of wheat was constructed using FISH with cDNA probes. FISH markers detected homoeology and chromosomal rearrangements of wild relatives, an important source of genes for wheat improvement.

Abstract

To transfer agronomically important genes from wild relatives to bread wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) by induced homoeologous recombination, it is important to know the chromosomal relationships of the species involved. Fluorescence in situ hybridization (FISH) can be used to study chromosome structure. The genomes of allohexaploid bread wheat and other species from the Triticeae tribe are colinear to some extent, i.e., composed of homoeoloci at similar positions along the chromosomes, and with genic regions being highly conserved. To develop cytogenetic markers specific for genic regions of wheat homoeologs, we selected more than 60 full-length wheat cDNAs using BLAST against mapped expressed sequence tags and used them as FISH probes. Most probes produced signals on all three homoeologous chromosomes at the expected positions. We developed a wheat physical map with several cDNA markers located on each of the 14 homoeologous chromosome arms. The FISH markers confirmed chromosome rearrangements within wheat genomes and were successfully used to study chromosome structure and homoeology in wild Triticeae species. FISH analysis detected 1U-6U chromosome translocation in the genome of Aegilops umbellulata, showed colinearity between chromosome A of Ae. caudata and group-1 wheat chromosomes, and between chromosome arm 7S#3L of Thinopyrum intermedium and the long arm of the group-7 wheat chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号