共查询到12条相似文献,搜索用时 15 毫秒
1.
Karl Grenier Maria Kontogiannea Edward A. Fon 《The Journal of biological chemistry》2014,289(43):29519-29530
Parkinson disease (PD) is a complex neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Multiple genes have been associated with PD, including Parkin and PINK1. Recent studies have established that the Parkin and PINK1 proteins function in a common mitochondrial quality control pathway, whereby disruption of the mitochondrial membrane potential leads to PINK1 stabilization at the mitochondrial outer surface. PINK1 accumulation leads to Parkin recruitment from the cytosol, which in turn promotes the degradation of the damaged mitochondria by autophagy (mitophagy). Most studies characterizing PINK1/Parkin mitophagy have relied on high concentrations of chemical uncouplers to trigger mitochondrial depolarization, a stimulus that has been difficult to adapt to neuronal systems and one unlikely to faithfully model the mitochondrial damage that occurs in PD. Here, we report that the short mitochondrial isoform of ARF (smARF), previously identified as an alternate translation product of the tumor suppressor p19ARF, depolarizes mitochondria and promotes mitophagy in a Parkin/PINK1-dependent manner, both in cell lines and in neurons. The work positions smARF upstream of PINK1 and Parkin and demonstrates that mitophagy can be triggered by intrinsic signaling cascades. 相似文献
2.
Liesbeth Aerts Katleen Craessaerts Bart De Strooper Vanessa A. Morais 《The Journal of biological chemistry》2015,290(5):2798-2811
Mutations in the PINK1 gene cause early-onset recessive Parkinson disease. PINK1 is a mitochondrially targeted kinase that regulates multiple aspects of mitochondrial biology, from oxidative phosphorylation to mitochondrial clearance. PINK1 itself is also phosphorylated, and this might be linked to the regulation of its multiple activities. Here we systematically analyze four previously identified phosphorylation sites in PINK1 for their role in autophosphorylation, substrate phosphorylation, and mitophagy. Our data indicate that two of these sites, Ser-228 and Ser-402, are autophosphorylated on truncated PINK1 but not on full-length PINK1, suggesting that the N terminus has an inhibitory effect on phosphorylation. We furthermore establish that phosphorylation of these PINK1 residues regulates the phosphorylation of the substrates Parkin and Ubiquitin. Especially Ser-402 phosphorylation appears to be important for PINK1 function because it is involved in Parkin recruitment and the induction of mitophagy. Finally, we identify Thr-313 as a residue that is critical for PINK1 catalytic activity, but, in contrast to previous reports, we find no evidence that this activity is regulated by phosphorylation. These data clarify the regulation of PINK1 through multisite phosphorylation. 相似文献
3.
Mutations in several genes, including PINK1 and Parkin, are known to cause autosomal recessive cases of Parkinson disease in humans. These genes operate in the same pathway and play a crucial role in mitochondrial dynamics and maintenance. PINK1 is required to recruit Parkin to mitochondria and initiate mitophagy upon mitochondrial depolarization. In this study, we show that PINK1-dependent Parkin mitochondrial recruitment in response to global mitochondrial damage by carbonyl cyanide m-chlorophenylhydrazine (CCCP) requires active glucose metabolism. Parkin accumulation on mitochondria and subsequent Parkin-dependent mitophagy is abrogated in glucose-free medium or in the presence of 2-deoxy-d-glucose upon CCCP treatment. The defects in Parkin recruitment correlate with intracellular ATP levels and can be attributed to suppression of PINK1 up-regulation in response to mitochondria depolarization. Low levels of ATP appear to prevent PINK1 translation instead of affecting PINK1 mRNA expression or reducing its stability. Consistent with a requirement of ATP for elevated PINK1 levels and Parkin mitochondrial recruitment, local or individual mitochondrial damage via photoirradiation does not affect Parkin recruitment to damaged mitochondria as long as a pool of functional mitochondria is present in the photoirradiated cells even in glucose-free or 2-deoxy-d-glucose-treated conditions. Thus, our data identify ATP as a key regulator for Parkin mitochondrial translocation and sustaining elevated PINK1 levels during mitophagy. PINK1 functions as an AND gate and a metabolic sensor coupling biogenetics of cells and stress signals to mitochondria dynamics. 相似文献
4.
Saera Song Seoyeon Jang Jeehye Park Sunhoe Bang Sekyu Choi Kyum-Yil Kwon Xiaoxi Zhuang Eunjoon Kim Jongkyeong Chung 《The Journal of biological chemistry》2013,288(8):5660-5672
Mutations in PINK1 (PTEN-induced putative kinase 1) are tightly linked to autosomal recessive Parkinson disease (PD). Although more than 50 mutations in PINK1 have been discovered, the role of these mutations in PD pathogenesis remains poorly understood. Here, we characterized 17 representative PINK1 pathogenic mutations in both mammalian cells and Drosophila. These mutations did not affect the typical cleavage patterns and subcellular localization of PINK1 under both normal and damaged mitochondria conditions in mammalian cells. However, PINK1 mutations in the kinase domain failed to translocate Parkin to mitochondria and to induce mitochondrial aggregation. Consistent with the mammalian data, Drosophila PINK1 mutants with mutations in the kinase domain (G426D and L464P) did not genetically interact with Parkin. Furthermore, PINK1-null flies expressing the transgenic G426D mutant displayed defective phenotypes with increasing age, whereas L464P mutant-expressing flies exhibited the phenotypes at an earlier age. Collectively, these results strongly support the hypothesis that the kinase activity of PINK1 is essential for its function and for regulating downstream Parkin functions in mitochondria. We believe that this study provides the basis for understanding the molecular and physiological functions of various PINK1 mutations and provides insights into the pathogenic mechanisms of PINK1-linked PD. 相似文献
5.
Su Jin Ham Soo Young Lee Saera Song Ju-Ryung Chung Sekyu Choi Jongkyeong Chung 《The Journal of biological chemistry》2016,291(4):1803-1816
Parkin is an E3 ligase that contains a ubiquitin-like (UBL) domain in the N terminus and an R1-in-between-ring-RING2 motif in the C terminus. We showed that the UBL domain specifically interacts with the R1 domain and negatively regulates Parkin E3 ligase activity, Parkin-dependent mitophagy, and Parkin translocation to the mitochondria. The binding between the UBL domain and the R1 domain was suppressed by carbonyl cyanide m-chlorophenyl hydrazone treatment or by expression of PTEN-induced putative kinase 1 (PINK1), an upstream kinase that phosphorylates Parkin at the Ser-65 residue of the UBL domain. Moreover, we demonstrated that phosphorylation of the UBL domain at Ser-65 prevents its binding to the R1 domain and promotes Parkin activities. We further showed that mitochondrial translocation of Parkin, which depends on phosphorylation at Ser-65, and interaction between the R1 domain and a mitochondrial outer membrane protein, VDAC1, are suppressed by binding of the UBL domain to the R1 domain. Interestingly, Parkin with missense mutations associated with Parkinson disease (PD) in the UBL domain, such as K27N, R33Q, and A46P, did not translocate to the mitochondria and induce E3 ligase activity by m-chlorophenyl hydrazone treatment, which correlated with the interaction between the R1 domain and the UBL domain with those PD mutations. These findings provide a molecular mechanism of how Parkin recruitment to the mitochondria and Parkin activation as an E3 ubiquitin ligase are regulated by PINK1 and explain the previously unknown mechanism of how Parkin mutations in the UBL domain cause PD pathogenesis. 相似文献
6.
Both signaling by nitric oxide (NO) and by the Ca2+/calmodulin (CaM)-dependent protein kinase II α isoform (CaMKIIα) are implicated in two opposing forms of synaptic plasticity underlying learning and memory, as well as in excitotoxic/ischemic neuronal cell death. For CaMKIIα, these functions specifically involve also Ca2+-independent autonomous activity, traditionally generated by Thr-286 autophosphorylation. Here, we demonstrate that NO-induced S-nitrosylation of CaMKIIα also directly generated autonomous activity, and that CaMKII inhibition protected from NO-induced neuronal cell death. NO induced S-nitrosylation at Cys-280/289, and mutation of either site abolished autonomy, indicating that simultaneous nitrosylation at both sites was required. Additionally, autonomy was generated only when Ca2+/CaM was present during NO exposure. Thus, generation of this form of CaMKIIα autonomy requires simultaneous signaling by NO and Ca2+. Nitrosylation also significantly reduced subsequent CaMKIIα autophosphorylation specifically at Thr-286, but not at Thr-305. A previously described reduction of CaMKII activity by S-nitrosylation at Cys-6 was also observed here, but only after prolonged (>5 min) exposure to NO donors. These results demonstrate a novel regulation of CaMKII by another second messenger system and indicate its involvement in excitotoxic neuronal cell death. 相似文献
7.
Sara Crowell Lyn M. Wancket Yasmine Shakibi Pingping Xu Jianjing Xue Lobelia Samavati Leif D. Nelin Yusen Liu 《The Journal of biological chemistry》2014,289(42):28753-28764
MAPK phosphatases (MKPs) are critical modulators of the innate immune response, and yet the mechanisms regulating their accumulation remain poorly understood. In the present studies, we investigated the role of post-translational modification in the accumulation of MKP-1 and MKP-2 in macrophages following LPS stimulation. We found that upon LPS stimulation, MKP-1 and MKP-2 accumulated with different kinetics: MKP-1 level peaked at ∼1 h, while MKP-2 levels continued to rise for at least 6 h. Accumulation of both MKP-1 and MKP-2 were attenuated by inhibition of the ERK cascade. Interestingly, p38 inhibition prior to LPS stimulation had little effect on MKP-1 and MKP-2 protein levels, but hindered their detection by an M-18 MKP-1 antibody. Studies of the epitope sequence recognized by the M-18 MKP-1 antibody revealed extensive phosphorylation of two serine residues in the C terminus of both MKP-1 and MKP-2 by the ERK pathway. Remarkably, the stability of both MKP-1 and MKP-2 was markedly decreased in macrophages in the presence of an ERK pathway inhibitor. Mutation of the two C-terminal serine residues in MKP-1 and MKP-2 to alanine decreased their half-lives, while mutating these residues to aspartate dramatically increased their half-lives. Deletion of the C terminus from MKP-1 and MKP-2 also considerably increased their stabilities. Surprisingly, enhanced stabilities of the MKP-1 and MKP-2 mutants were not associated with decreased ubiquitination. Degradation of both MKP-1 and MKP-2 was attenuated by proteasomal inhibitors. Our studies suggest that MKP-1 and MKP-2 stability is regulated by ERK-mediated phosphorylation through a degradation pathway independent of polyubiquitination. 相似文献
8.
9.
10.
Faiyaz Ahmad Weixing Shen Fabrice Vandeput Nicolas Szabo-Fresnais Judith Krall Eva Degerman Frank Goetz Enno Klussmann Matthew Movsesian Vincent Manganiello 《The Journal of biological chemistry》2015,290(11):6763-6776
Cyclic nucleotide phosphodiesterase 3A (PDE3) regulates cAMP-mediated signaling in the heart, and PDE3 inhibitors augment contractility in patients with heart failure. Studies in mice showed that PDE3A, not PDE3B, is the subfamily responsible for these inotropic effects and that murine PDE3A1 associates with sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2), phospholamban (PLB), and AKAP18 in a multiprotein signalosome in human sarcoplasmic reticulum (SR). Immunohistochemical staining demonstrated that PDE3A co-localizes in Z-bands of human cardiac myocytes with desmin, SERCA2, PLB, and AKAP18. In human SR fractions, cAMP increased PLB phosphorylation and SERCA2 activity; this was potentiated by PDE3 inhibition but not by PDE4 inhibition. During gel filtration chromatography of solubilized SR membranes, PDE3 activity was recovered in distinct high molecular weight (HMW) and low molecular weight (LMW) peaks. HMW peaks contained PDE3A1 and PDE3A2, whereas LMW peaks contained PDE3A1, PDE3A2, and PDE3A3. Western blotting showed that endogenous HMW PDE3A1 was the principal PKA-phosphorylated isoform. Phosphorylation of endogenous PDE3A by rPKAc increased cAMP-hydrolytic activity, correlated with shift of PDE3A from LMW to HMW peaks, and increased co-immunoprecipitation of SERCA2, cav3, PKA regulatory subunit (PKARII), PP2A, and AKAP18 with PDE3A. In experiments with recombinant proteins, phosphorylation of recombinant human PDE3A isoforms by recombinant PKA catalytic subunit increased co-immunoprecipitation with rSERCA2 and rat rAKAP18 (recombinant AKAP18). Deletion of the recombinant human PDE3A1/PDE3A2 N terminus blocked interactions with recombinant SERCA2. Serine-to-alanine substitutions identified Ser-292/Ser-293, a site unique to human PDE3A1, as the principal site regulating its interaction with SERCA2. These results indicate that phosphorylation of human PDE3A1 at a PKA site in its unique N-terminal extension promotes its incorporation into SERCA2/AKAP18 signalosomes, where it regulates a discrete cAMP pool that controls contractility by modulating phosphorylation-dependent protein-protein interactions, PLB phosphorylation, and SERCA2 activity. 相似文献
11.
12.
Pavana M. Hegde Arijit Dutta Shiladitya Sengupta Joy Mitra Sanjay Adhikari Alan E. Tomkinson Guo-Min Li Istvan Boldogh Tapas K. Hazra Sankar Mitra Muralidhar L. Hegde 《The Journal of biological chemistry》2015,290(34):20919-20933
The human DNA glycosylase NEIL1 was recently demonstrated to initiate prereplicative base excision repair (BER) of oxidized bases in the replicating genome, thus preventing mutagenic replication. A significant fraction of NEIL1 in cells is present in large cellular complexes containing DNA replication and other repair proteins, as shown by gel filtration. However, how the interaction of NEIL1 affects its recruitment to the replication site for prereplicative repair was not investigated. Here, we show that NEIL1 binarily interacts with the proliferating cell nuclear antigen clamp loader replication factor C, DNA polymerase δ, and DNA ligase I in the absence of DNA via its non-conserved C-terminal domain (CTD); replication factor C interaction results in ∼8-fold stimulation of NEIL1 activity. Disruption of NEIL1 interactions within the BERosome complex, as observed for a NEIL1 deletion mutant (N311) lacking the CTD, not only inhibits complete BER in vitro but also prevents its chromatin association and reduced recruitment at replication foci in S phase cells. This suggests that the interaction of NEIL1 with replication and other BER proteins is required for efficient repair of the replicating genome. Consistently, the CTD polypeptide acts as a dominant negative inhibitor during in vitro repair, and its ectopic expression sensitizes human cells to reactive oxygen species. We conclude that multiple interactions among BER proteins lead to large complexes, which are critical for efficient BER in mammalian cells, and the CTD interaction could be targeted for enhancing drug/radiation sensitivity of tumor cells. 相似文献