首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple Ca2+ release and entry mechanisms and potential cytoskeletal targets have been implicated in vascular endothelial barrier dysfunction; however, the immediate downstream effectors of Ca2+ signals in the regulation of endothelial permeability still remain unclear. In the present study, we evaluated the contribution of multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) as a mediator of thrombin-stimulated increases in human umbilical vein endothelial cell (HUVEC) monolayer permeability. For the first time, we identified the CaMKIIδ6 isoform as the predominant CaMKII isoform expressed in endothelium. As little as 2.5 nm thrombin maximally increased CaMKIIδ6 activation assessed by Thr287 autophosphorylation. Electroporation of siRNA targeting endogenous CaMKIIδ (siCaMKIIδ) suppressed expression of the kinase by >80% and significantly inhibited 2.5 nm thrombin-induced increases in monolayer permeability assessed by electrical cell-substrate impedance sensing (ECIS). siCaMKIIδ inhibited 2.5 nm thrombin-induced activation of RhoA, but had no effect on thrombin-induced ERK1/2 activation. Although Rho kinase inhibition strongly suppressed thrombin-induced HUVEC hyperpermeability, inhibiting ERK1/2 activation had no effect. In contrast to previous reports, these results indicate that thrombin-induced ERK1/2 activation in endothelial cells is not mediated by CaMKII and is not involved in endothelial barrier hyperpermeability. Instead, CaMKIIδ6 mediates thrombin-induced HUVEC barrier dysfunction through RhoA/Rho kinase as downstream intermediates. Moreover, the relative contribution of the CaMKIIδ6/RhoA pathway(s) diminished with increasing thrombin stimulation, indicating recruitment of alternative signaling pathways mediating endothelial barrier dysfunction, dependent upon thrombin concentration.  相似文献   

2.
MAPK and Akt pathways are predominant mediators of trophic signaling for many neuronal systems. Among the vasoactive intestinal peptide/secretin/glucagon family of related peptides, pituitary adenylate cyclase-activating polypeptide (PACAP) binding to specific PAC1 receptor isoforms can engage multiple signaling pathways and promote neuroprotection through mechanisms that are not well understood. Using a primary sympathetic neuronal system, the current studies demonstrate that PACAP activation of PAC1HOP1 receptors engages both MAPK and Akt neurotrophic pathways in an integrated program to facilitate neuronal survival after growth factor withdrawal. PACAP not only stimulated prosurvival ERK1/2 and ERK5 activation but also abrogated SAPK/JNK and p38 MAPK signaling in parallel. In contrast to the potent and rapid effects of PACAP in ERK1/2 phosphorylation, PACAP stimulated Akt phosphorylation in a late phase of PAC1HOP1 receptor signaling. From inhibitor and immunoprecipitation analyses, the PACAP/PAC1HOP1 receptor-mediated Akt responses did not represent transactivation mechanisms but appeared to depend on Gαq/phosphatidylinositol 3-kinase γ activity and vesicular internalization pathways. Phosphatidylinositol 3-kinase γ-selective inhibitors blocked PACAP-stimulated Akt phosphorylation in primary neuronal cultures and in PAC1HOP1-overexpressing cell lines; RNA interference-mediated knockdown of the receptor effectors attenuated PACAP-mediated Akt activation. Similarly, perturbation of endocytic pathways also blocked Akt phosphorylation. Between ERK and Akt pathways, PACAP-stimulated Akt signaling was the primary cascade that attenuated cultured neuron apoptosis after growth factor withdrawal. The partitioning of PACAP-mediated Akt signaling in endosomes may be a key mechanism contributing to the high spatial and temporal specificity in signal transduction necessary for survival pathways.  相似文献   

3.
Signal transduction via NFκB and MAP kinase cascades is a universal response initiated upon pathogen recognition by Toll-like receptors (TLRs). How activation of these divergent signaling pathways is integrated to dictate distinct immune responses to diverse pathogens is still incompletely understood. Herein, contrary to current perception, we demonstrate that a signaling pathway defined by the inhibitor of κB kinase β (IKKβ), MAP3 kinase tumor progression locus 2 (Tpl2/MAP3K8), and MAP kinase ERK is differentially activated by TLRs. TLRs 2, 4, and 7 directly activate this inflammatory axis, inducing immediate ERK phosphorylation and early TNFα secretion. In addition to TLR adaptor proteins, IKKβ-Tpl2-ERK activation by TLR4 is regulated by the TLR4 co-receptor CD14 and the tyrosine kinase Syk. Signals from TLRs 3 and 9 do not initiate early activation of IKKβ-Tpl2-ERK pathway but instead induce delayed, NADPH-oxidase-dependent ERK phosphorylation and TNFα secretion via autocrine reactive oxygen species signaling. Unexpectedly, Tpl2 is an essential regulator of ROS production during TLR signaling. Overall, our study reveals distinct mechanisms activating a common inflammatory signaling cascade and delineates differences in MyD88-dependent signaling between endosomal TLRs 7 and 9. These findings further confirm the importance of Tpl2 in innate host defense mechanisms and also enhance our understanding of how the immune system tailors pathogen-specific gene expression patterns.  相似文献   

4.
Among putative downstream synaptic targets of β-amyloid (Aβ) are signaling molecules involved in synaptic function, memory formation and cognition, such as the MAP kinases, MKPs, CaMKII, CREB, Fyn, and Tau. Here, we assessed the activation and interaction of signaling pathways upon prolonged exposure to Aβ in model nerve cells expressing nicotinic acetylcholine receptors (nAChRs). Our goal was to characterize the steps underlying sensitization of the nerve cells to neurotoxicity when Aβ-target receptors are present. Of particular focus was the connection of the activated signaling molecules to oxidative stress. Differentiated neuroblastoma cells expressing mouse α4β2-nAChRs were exposed to Aβ1–42 for intervals from 30 min to 3 days. The cells and cell-derived protein extracts were then probed for activation of signaling pathway molecules (ERK, JNK, CaMKII, CREB, MARCKS, Fyn, tau). Our results show substantial, progressive activation of ERK in response to nanomolar Aβ exposure, starting at the earliest time point. Increased ERK activation was followed by JNK activation as well as an increased expression of PHF-tau, paralleled by increased levels of reactive oxygen species (ROS). The impact of prolonged Aβ on the levels of pERK, pJNK, and ROS was attenuated by MEK-selective and JNK-selective inhibitors. In addition, the MEK inhibitor as well as a JNK inhibitor attenuated Aβ-induced nuclear fragmentation, which followed the changes in ROS levels. These results demonstrate that the presence of nAChRs sensitizes neurons to the neurotoxic action of Aβ through the timed activation of discrete intracellular signaling molecules, suggesting pathways involved in the early stages of Alzheimer disease.  相似文献   

5.
There is considerable evidence to suggest that drug actions at the κ-opioid receptor (KOR) may represent a means to control pain perception and modulate reward thresholds. As a G protein-coupled receptor (GPCR), the activation of KOR promotes Gαi/o protein coupling and the recruitment of β-arrestins. It has become increasingly evident that GPCRs can transduce signals that originate independently via G protein pathways and β-arrestin pathways; the ligand-dependent bifurcation of such signaling is referred to as “functional selectivity” or “signaling bias.” Recently, a KOR agonist, 6′-guanidinonaltrindole (6′-GNTI), was shown to display bias toward the activation of G protein-mediated signaling over β-arrestin2 recruitment. Therefore, we investigated whether such ligand bias was preserved in striatal neurons. Although the reference KOR agonist U69,593 induces the phosphorylation of ERK1/2 and Akt, 6′-GNTI only activates the Akt pathway in striatal neurons. Using pharmacological tools and β-arrestin2 knock-out mice, we show that KOR-mediated ERK1/2 phosphorylation in striatal neurons requires β-arrestin2, whereas Akt activation depends upon G protein signaling. These findings reveal a point of KOR signal bifurcation that can be observed in an endogenous neuronal setting and may prove to be an important indicator when developing biased agonists at the KOR.  相似文献   

6.
7.
The functional impact of adiponectin on pancreatic beta cells is so far poorly understood. Although adiponectin receptors (AdipoR1/2) were identified, their involvement in adiponectin-induced signaling and other molecules involved is not clearly defined. Therefore, we investigated the role of adiponectin in beta cells and the signaling mediators involved. MIN6 beta cells and mouse islets were stimulated with globular (2.5 μg/ml) or full-length (5 μg/ml) adiponectin under serum starvation, and cell viability, proliferation, apoptosis, insulin gene expression, and secretion were measured. Lysates were subjected to Western blot analysis to determine phosphorylation of AMP-activated protein kinase (AMPK), Akt, or ERK. Functional significance of signaling was confirmed using dominant negative mutants or pharmacological inhibitors. Participation of AdipoRs was assessed by overexpression or siRNA. Adiponectin failed to activate AMPK after 10 min or 1- and 24-h stimulation. ERK was significantly phosphorylated after 24-h treatment with adiponectin, whereas Akt was activated at all time points examined. 24-h stimulation with adiponectin significantly increased cell viability by decreasing cellular apoptosis, and this was prevented by dominant negative Akt, wortmannin (PI3K inhibitor), and U0126 (MEK inhibitor). Moreover, adiponectin regulated insulin gene expression and glucose-stimulated insulin secretion, which was also prevented by wortmannin and U0126 treatment. Interestingly, the data also suggest adiponectin-induced changes in Akt and ERK phosphorylation and caspase-3 may occur independent of the level of AdipoR expression. This study demonstrates a lack of AMPK involvement and implicates Akt and ERK in adiponectin signaling, leading to protection against apoptosis and stimulation of insulin gene expression and secretion in pancreatic beta cells.  相似文献   

8.
G protein-coupled receptor (GPCR) kinase 2 (GRK2) regulates G protein-coupled receptor signaling via agonist-induced receptor phosphorylation and desensitization. GRK2 can also modulate cellular activation by interacting with downstream signaling molecules. The intracellular GRK2 level changes during inflammatory conditions. We investigated how IL-1β-induced changes in endogenous GRK2 expression influence chemokine receptor signaling in primary astrocytes. Culturing astrocytes with IL-1β for 24 h induced a 2–3-fold increase in GRK2 and decreased C–C chemokine ligand 2 (CCL2)-induced ERK1/2 activation. Conversely, the 45% decrease in GRK2 expression in astrocytes from GRK2+/− animals resulted in a more pronounced CCL2-induced ERK1/2 phosphorylation. Increased GRK2 inhibited CCL2-induced Akt phosphorylation at Thr308 and Ser473 as well as pPDK-1 translocation. In contrast, altered GRK2 levels did not change the CCL2-induced increase in intracellular calcium or MEK1/2 phosphorylation. These data suggest that altered GRK2 expression modulates chemokine signaling downstream of the receptor. We found that GRK2 kinase activity was not required to decrease chemokine-induced ERK1/2 phosphorylation, whereas regulation of CCL2-induced Akt phosphorylation did require an active GRK2 kinase domain. Collectively, these data suggest that changes in endogenous GRK2 expression in primary astrocytes regulate chemokine receptor signaling to ERK1/2 and to PDK-1-Akt downstream of receptor coupling via kinase-dependent and kinase-independent mechanisms, respectively.  相似文献   

9.
Phosphorylation plays vital roles in the regulation of G protein-coupled receptor (GPCR) functions. The apelin and apelin receptor (APJ) system is involved in the regulation of cardiovascular function and central control of body homeostasis. Here, using tandem mass spectrometry, we first identified phosphorylated serine residues in the C terminus of APJ. To determine the role of phosphorylation sites in APJ-mediated G protein-dependent and -independent signaling and function, we induced a mutation in the C-terminal serine residues and examined their effects on the interaction between APJ with G protein or GRK/β-arrestin and their downstream signaling. Mutation of serine 348 led to an elimination of both GRK and β-arrestin recruitment to APJ induced by apelin-13. Moreover, APJ internalization and G protein-independent ERK signaling were also abolished by point mutation at serine 348. In contrast, this mutant at serine residues had no demonstrable impact on apelin-13-induced G protein activation and its intracellular signaling. These findings suggest that mutation of serine 348 resulted in inactive GRK/β-arrestin. However, there was no change in the active G protein thus, APJ conformation was biased. These results provide important information on the molecular interplay and impact of the APJ function, which may be extrapolated to design novel drugs for cardiac hypertrophy based on this biased signal pathway.  相似文献   

10.
Chemokine receptor CCR7 directs mature dendritic cells (mDCs) to secondary lymph nodes where these cells regulate the activation of T cells. CCR7 also promotes survival in mDCs, which is believed to take place largely through Akt-dependent signaling mechanisms. We have analyzed the involvement of the AMP-dependent kinase (AMPK) in the control of CCR7-dependent survival. A pro-apoptotic role for AMPK is suggested by the finding that pharmacological activators induce apoptosis, whereas knocking down of AMPK with siRNA extends mDC survival. Pharmacological activation of AMPK also induces apoptosis of mDCs in the lymph nodes. Stimulation of CCR7 leads to inhibition of AMPK, through phosphorylation of Ser-485, which was mediated by Gi/Gβγ, but not by Akt or S6K, two kinases that control the phosphorylation of AMPK on Ser-485 in other settings. Using selective pharmacological inhibitors, we show that CCR7-induced phosphorylation of AMPK on Ser-485 is mediated by MEK and ERK. Coimmunoprecipitation analysis and proximity ligation assays indicate that AMPK associates with ERK, but not with MEK. These results suggest that in addition to Akt-dependent signaling mechanisms, CCR7 can also promote survival of mDCs through a novel MEK1/2-ERK1/2-AMPK signaling axis. The data also suggest that AMPK may be a potential target to modulate mDC lifespan and the immune response.  相似文献   

11.
Disregulation of epidermal growth factor receptor (EGFR) signaling directly promotes bypass of proliferation and survival restraints in a high frequency of epithelia-derived cancer. As such, much effort is currently focused on decoding the molecular architecture supporting EGFR activation and function. Here, we have leveraged high throughput reverse phase protein lysate arrays, with a sensitive fluorescent nanocrystal-based phosphoprotein detection assay, together with large scale siRNA-mediated loss of function to execute a quantitative interrogation of all elements of the human kinome supporting EGF-dependent signaling. This screening platform has captured multiple novel contributions of diverse protein kinases to modulation of EGFR signal generation, signal amplitude, and signal duration. As examples, the prometastatic SNF1/AMPK-related kinase hormonally upregulated Neu kinase was found to support EGFR activation in response to ligand binding, whereas the enigmatic kinase MGC16169 selectively supports coupling of active EGFR to ERK1/2 regulation. Of note, the receptor tyrosine kinase MERTK and the pyrimidine kinase UCK1 were both found to be required for surface accumulation of EGFR and subsequent pathway activation in multiple cancer cell backgrounds and may represent new targets for therapeutic intervention.  相似文献   

12.
Our previous work has shown that the membrane microdomain-associated flotillin proteins are potentially involved in epidermal growth factor (EGF) receptor signaling. Here we show that knockdown of flotillin-1/reggie-2 results in reduced EGF-induced phosphorylation of specific tyrosines in the EGF receptor (EGFR) and in inefficient activation of the downstream mitogen-activated protein (MAP) kinase and Akt signaling. Although flotillin-1 has been implicated in endocytosis, its depletion affects neither the endocytosis nor the ubiquitination of the EGFR. However, EGF-induced clustering of EGFR at the cell surface is altered in cells lacking flotillin-1. Furthermore, we show that flotillins form molecular complexes with EGFR in an EGF/EGFR kinase-independent manner. However, knockdown of flotillin-1 appears to affect the activation of the downstream MAP kinase signaling more directly. We here show that flotillin-1 forms a complex with CRAF, MEK1, ERK, and KSR1 (kinase suppressor of RAS) and that flotillin-1 knockdown leads to a direct inactivation of ERK1/2. Thus, flotillin-1 plays a direct role during both the early phase (activation of the receptor) and late (activation of MAP kinases) phase of growth factor signaling. Our results here unveil a novel role for flotillin-1 as a scaffolding factor in the regulation of classical MAP kinase signaling. Furthermore, our results imply that other receptor-tyrosine kinases may also rely on flotillin-1 upon activation, thus suggesting a general role for flotillin-1 as a novel factor in receptor-tyrosine kinase/MAP kinase signaling.  相似文献   

13.
14.
Atypical PKC (aPKC) isoforms are activated by the phosphatidylinositol 3-kinase product phosphatidylinositol 3,4,5-(PO4)3 (PIP3). How PIP3 activates aPKC is unknown. Although Akt activation involves PIP3 binding to basic residues in the Akt pleckstrin homology domain, aPKCs lack this domain. Here we examined the role of basic arginine residues common to aPKC pseudosubstrate sequences. Replacement of all five (or certain) arginine residues in the pseudosubstrate sequence of PKC-ι by site-directed mutagenesis led to constitutive activation and unresponsiveness to PIP3 in vitro or insulin in vivo. However, with the addition of the exogenous arginine-containing pseudosubstrate tridecapeptide to inhibit this constitutively active PKC-ι, PIP3-activating effects were restored. A similar restoration of responsiveness to PIP3 was seen when exogenous pseudosubstrate was used to inhibit mouse liver PKC-λ/ζ maximally activated by insulin or ceramide and a truncated, constitutively active PKC-ζ mutant lacking all regulatory domain elements and containing “activating” glutamate residues at loop and autophosphorylation sites (Δ1–247/T410E/T560E-PKC-ζ). NMR studies suggest that PIP3 binds directly to the pseudosubstrate. The ability of PIP3 to counteract the inhibitory effects of the exogenous pseudosubstrate suggests that basic residues in the pseudosubstrate sequence are required for maintaining aPKCs in an inactive state and are targeted by PIP3 for displacement from the substrate-binding site during kinase activation.  相似文献   

15.
During brain aging and progression of Alzheimer’s disease, the levels of Aβ and proinflammatory cytokines accumulate very early in the pathogenic process prior to any major degenerative changes. Accumulation of these molecules may impair with signal transduction pathways critical for neuronal health. Neurotrophin signaling is a critical mechanism involved in synaptic plasticity, learning and memory and neuronal health. We have recently shown that exposure to low levels of Aβ impairs BDNF trkB signal transduction, suppressing the Ras/ERK, and the PI3-K/Akt pathways but not the PLCγ pathway. As a result, downstream regulation of gene expression and neuronal viability are impaired. Recently, we have found that at least three agents – Aβ, TNFα, Il-1β – suppress TrkB signaling and act via a common and novel mechanism. These factors all regulate the docking proteins (e.g., IRS and Shc) that link the activated Trk receptor to downstream effectors. While this is a novel mechanism underlying regulation of Trk signaling, such a mechanism has been identified for the insulin/IGF-1 receptor in the presence of proinflammatory cytokines and is one of the mechanisms for insulin/IGF-resistance, which is a key risk factor for type II diabetes (1). We suggest that accumulation of AB and proinflammatory cytokines during aging generates in the brain a “neurotrophin resistance” state that places the brain at risk for cognitive decline and dementia.  相似文献   

16.
In the retina information decoding is dependent on excitatory neurotransmission and is critically modulated by AMPA glutamate receptors. The Src-tyrosine kinase has been implicated in modulating neurotransmission in CNS. Thus, our main goal was to correlate AMPA-mediated excitatory neurotransmission with the modulation of Src activity in retinal neurons. Cultured retinal cells were used to access the effects of AMPA stimulation on nitric oxide (NO) production and Src phosphorylation. 4-Amino-5-methylamino-2′,7′-difluorofluorescein diacetate fluorescence mainly determined NO production, and immunocytochemistry and Western blotting evaluated Src activation. AMPA receptors activation rapidly up-regulated Src phosphorylation at tyrosine 416 (stimulatory site) and down-regulated phosphotyrosine 527 (inhibitory site) in retinal cells, an effect mainly mediated by calcium-permeable AMPA receptors. Interestingly, experiments confirmed that neuronal NOS was activated in response to calcium-permeable AMPA receptor stimulation. Moreover, data suggest NO pathway as a key regulatory signaling in AMPA-induced Src activation in neurons but not in glial cells. The NO donor SNAP (S-nitroso-N-acetyl-dl-penicillamine) and a soluble guanylyl cyclase agonist (YC-1) mimicked AMPA effect in Src Tyr-416 phosphorylation, reinforcing that Src activation is indeed modulated by the NO pathway. Gain and loss-of-function data demonstrated that ERK is a downstream target of AMPA-induced Src activation and NO signaling. Furthermore, AMPA stimulated NO production in organotypic retinal cultures and increased Src activity in the in vivo retina. Additionally, AMPA-induced apoptotic retinal cell death was regulated by both NOS and Src activity. Because Src activity is pivotal in several CNS regions, the data presented herein highlight that Src modulation is a critical step in excitatory retinal cell death.  相似文献   

17.
The cAMP signaling system regulates various cellular functions, including metabolism, gene expression, and death. Sirtuin 6 (SIRT6) removes acetyl groups from histones and regulates genomic stability and cell viability. We hypothesized that cAMP modulates SIRT6 activity to regulate apoptosis. Therefore, we examined the effects of cAMP signaling on SIRT6 expression and radiation-induced apoptosis in lung cancer cells. cAMP signaling in H1299 and A549 human non-small cell lung cancer cells was activated via the expression of constitutively active Gαs plus treatment with prostaglandin E2 (PGE2), isoproterenol, or forskolin. The expression of sirtuins and signaling molecules were analyzed by Western blotting. Activation of cAMP signaling reduced SIRT6 protein expression in lung cancer cells. cAMP signaling increased the ubiquitination of SIRT6 protein and promoted its degradation. Treatment with MG132 and inhibiting PKA with H89 or with a dominant-negative PKA abolished the cAMP-mediated reduction in SIRT6 levels. Treatment with PGE2 inhibited c-Raf activation by increasing inhibitory phosphorylation at Ser-259 in a PKA-dependent manner, thereby inhibiting downstream MEK-ERK signaling. Inhibiting ERK with inhibitors or with dominant-negative ERKs reduced SIRT6 expression, whereas activation of ERK by constitutively active MEK abolished the SIRT6-depleting effects of PGE2. cAMP signaling also augmented radiation-induced apoptosis in lung cancer cells. This effect was abolished by exogenous expression of SIRT6. It is concluded that cAMP signaling reduces SIRT6 expression by promoting its ubiquitin-proteasome-dependent degradation, a process mediated by the PKA-dependent inhibition of the Raf-MEK-ERK pathway. Reduced SIRT6 expression mediates the augmentation of radiation-induced apoptosis by cAMP signaling in lung cancer cells.  相似文献   

18.
Invading pathogens manipulate cellular process of the host cell to establish a safe replicative niche. To this end they secrete a spectrum of proteins called effectors that modify cellular environment through a variety of mechanisms. One of the most important mechanisms is the manipulation of cellular signaling through modifications of the cellular phosphoproteome. Phosphorylation/dephosphorylation plays a pivotal role in eukaryotic cell signaling, with ∼500 different kinases and ∼130 phosphatases in the human genome. Pathogens affect the phosphoproteome either directly through the action of bacterial effectors, and/or indirectly through downstream effects of host proteins modified by the effectors. Here we review the current knowledge of the structure, catalytic mechanism and function of bacterial effectors that modify directly the phosphorylation state of host proteins. These effectors belong to four enzyme classes: kinases, phosphatases, phospholyases and serine/threonine acetylases.  相似文献   

19.
Increase in protein synthesis contributes to kidney hypertrophy and matrix protein accumulation in diabetes. We have previously shown that high glucose-induced matrix protein synthesis is associated with inactivation of glycogen synthase kinase 3β (GSK3β) in renal cells and in the kidneys of diabetic mice. We tested whether activation of GSK3β by sodium nitroprusside (SNP) mitigates kidney injury in diabetes. Studies in kidney-proximal tubular epithelial cells showed that SNP abrogated high glucose-induced laminin increment by stimulating GSK3β and inhibiting Akt, mTORC1, and events in mRNA translation regulated by mTORC1 and ERK. NONOate, an NO donor, also activated GSK3β, indicating that NO may mediate SNP stimulation of GSK3β. SNP administered for 3 weeks to mice with streptozotocin-induced type 1 diabetes ameliorated kidney hypertrophy, accumulation of matrix proteins, and albuminuria without changing blood glucose levels. Signaling studies showed that diabetes caused inactivation of GSK3β by activation of Src, Pyk2, Akt, and ERK; GSK3β inhibition activated mTORC1 and downstream events in mRNA translation in the kidney cortex. These reactions were abrogated by SNP. We conclude that activation of GSK3β by SNP ameliorates kidney injury induced by diabetes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号