首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
Protein phosphatase 5 (PP5) is an evolutionary conserved serine/threonine phosphatase. Its dephosphorylation activity modulates a diverse set of cellular factors including protein kinases and the microtubule-associated tau protein involved in neurodegenerative disorders. It is auto-regulated by its heat-shock protein (Hsp90)-interacting tetratricopeptide repeat (TPR) domain and its C-terminal α-helix. In the present study, we report the identification of five specific PP5 activators [PP5 small-molecule activators (P5SAs)] that enhance the phosphatase activity up to 8-fold. The compounds are allosteric modulators accelerating efficiently the turnover rate of PP5, but do barely affect substrate binding or the interaction between PP5 and the chaperone Hsp90. Enzymatic studies imply that the compounds bind to the phosphatase domain of PP5. For the most promising compound crystallographic comparisons of the apo PP5 and the PP5–P5SA-2 complex indicate a relaxation of the auto-inhibited state of PP5. Residual electron density and mutation analyses in PP5 suggest activator binding to a pocket in the phosphatase/TPR domain interface, which may exert regulatory functions. These compounds thus may expose regulatory mechanisms in the PP5 enzyme and serve to develop optimized activators based on these scaffolds.  相似文献   

2.
Members of the phosphoprotein phosphatase family of serine/threonine phosphatases are thought to exist in different native oligomeric complexes. Protein phosphatase 2A (PP2A) is composed of a catalytic subunit (PP2Ac) that complexes with an A subunit, which in turn also interacts with one of many B subunits that regulate substrate specificity and/or (sub)cellular localization of the enzyme. Another family member, protein phosphatase 5 (PP5), contains a tetratricopeptide repeat domain at its N terminus, which has been suggested to mediate interactions with other proteins. PP5 was not thought to interact with partners homologous to the A or B subunits that exist within PP2A. However, our results indicate that this may not be the case. A yeast two-hybrid screen revealed an interaction between PP5 and the A subunit of PP2A. This interaction was confirmed for endogenous proteins in vivo using immunoprecipitation analysis and for recombinant proteins by in vitro binding experiments. Our results also indicate that the tetratricopeptide repeat domain of PP5 is required and sufficient for this interaction. In addition, immunoprecipitated PP5 contains associated B subunits. Thus, our results suggest that PP5 can exist in a PP2A-like heterotrimeric form containing both A and B subunits.  相似文献   

3.
Protein phosphatase 5 (PP5) is a 58-kDa novel phosphoseryl/phosphothreonyl protein phosphatase. It is ubiquitously expressed in all mammalian tissues examined, with a high level in the brain, but little is known about its physiological substrates. We found that this phosphatase dephosphorylated recombinant tau phosphorylated with cAMP-dependent protein kinase and glycogen synthase kinase-3beta, as well as abnormally hyperphosphorylated tau isolated from brains of patients with Alzheimer's disease. The specific activity of PP5 toward tau was comparable to those reported with other protein substrates examined to date. The PP5 activity toward tau was stimulated by arachidonic acid by 30- to 45-fold. Immunostaining demonstrated that PP5 was primarily cytoplasmic in PC12 cells and in neurons of postmortem human brain tissue. A small pool of PP5 associated with microtubules. Expression of active PP5 in PC12 cells resulted in reduced phosphorylation of tau, suggesting that PP5 can also dephosphorylate tau in cells. These results suggest that PP5 plays a role in the dephosphorylation of tau and might be involved in the molecular pathogenesis of Alzheimer's disease.  相似文献   

4.
Protein phosphatase T from rat liver, so termed due to its activity toward [32P-Thr]casein and its marked preference for the phosphopeptide Arg-Arg-Ala-Thr(P)-Val-Ala over its phosphoseryl derivative (Donella Deana, A., Marchiori, F., Meggio, F. and Pinna, L.A. (1982) J. Biol. Chem. 257, 8565-8568), is shown here to belong to the family of type 2A protein phosphatase according to Cohen's nomenclature (Ingebritsen, T.S. and Cohen, P. (1983) Eur. J. Biochem. 132, 255-261). In particular, protein phosphatase T is endowed with phosphorylase phosphatase activity that is stimulated by protamine, histone H1 and heparin, it is inhibited by spermine, it does not bind to heparin-Sepharose and it readily dephosphorylates the phosphopeptide Arg-Arg-Leu-Ser(P)-Ile-Ser-Thr-Glu-Ser reproducing the phosphorylation site of the alpha-subunit of phosphorylase kinase. The Mr of protein phosphatase T determined by gel filtration under non-denaturating conditions is about 150 kDa and its activity ratio toward histone H1 phosphorylated by protein kinase C versus histone H1 phosphorylated by cAMP-dependent protein kinase is unusually high. Some properties of protein phosphatase T, such as its weak binding to DEAE-cellulose and its high stimulation by protamine as compared to a relatively poor stimulation by histone H1, suggest that it may be similar to subtype 2Ao of protein phosphatase 2A.  相似文献   

5.
6.
7.
8.
Le AV  Tavalin SJ  Dodge-Kafka KL 《Biochemistry》2011,50(23):5279-5291
The ubiquitously expressed and highly promiscuous protein phosphatase 1 (PP1) regulates many cellular processes. Targeting PP1 to specific locations within the cell allows for the regulation of PP1 by conferring substrate specificity. In the present study, we identified AKAP79 as a novel PP1 regulatory subunit. Immunoprecipitaiton of the AKAP from rat brain extract found that the PP1 catalytic subunit copurified with the anchoring protein. This is a direct interaction, demonstrated by pulldown experiments using purified proteins. Interestingly, the addition of AKAP79 to purified PP1 catalytic subunit decreased phosphatase activity with an IC(50) of 811 ± 0.56 nM of the anchoring protein. Analysis of AKAP79 identified a PP1 binding site that conformed to a consensus PP1 binding motif (FxxR/KxR/K) in the first 44 amino acids of the anchoring protein. This was confirmed when a peptide mimicking this region of AKAP79 was able to bind PP1 by both pulldown assay and surface plasmon resonance. However, PP1 was still able to bind to AKAP79 upon deletion of this region, suggesting additional sites of contact between the anchoring protein and the phosphatase. Importantly, this consensus PP1 binding motif was found not to be responsible for PP1 inhibition, but rather enhanced phosphatase activity, as deletion of this domain resulted in an increased inhibition of PP1 activity. Instead, a second interaction domain localized to residues 150-250 of AKAP79 was required for the inhibition of PP1. However, the inhibitory actions of AKAP79 on PP1 are substrate dependent, as the anchoring protein did not inhibit PP1 dephosphorylation of phospho-PSD-95, a substrate found in AKAP79 complexes in the brain. These combined observations suggest that AKAP79 acts as a PP1 regulatory subunit that can direct PP1 activity toward specific targets in the AKAP79 complex.  相似文献   

9.
Arachidonate activation of the NADPH-oxidase in intact neutrophils and in a cell-free O2- generation system was compared to synergistic activation in response to arachidonate and agents that effect protein phosphorylation. In intact neutrophils, suboptimal doses of retinal which increase protein phosphorylation, or 4B-phorbol 12-myristate 13-acetate (PMA) an activator of protein kinase C, induced minimal O2- release, but primed neutrophils to release enhanced amounts of O2- in response to 2.5 microM arachidonate. In contrast to retinal or PMA, okadaic acid, a specific inhibitor of serine/threonine protein phosphatases, did not induce any release of O2-, but significantly increased the maximal rate and duration of O2- release in response to arachidonate. In the cell-free system, only arachidonate induced O2- generation. Consistent with previous findings, activation of the cell-free system was dependent of the presence of light membranes, cytosol, NADPH, Mg2+, and 82 microM arachidonate. Pretreatment of neutrophils with suboptimal doses of PMA or retinal had little effect on the arachidonate-stimulated release of O2- in cell-free preparations of these cells. However, cytosol (but not light membranes) from PMA or retinal-primed neutrophils was more effective in completing resting membrane NADPH-oxidase activity when compared to cytosol from resting cells. The addition of protein kinase C inhibitors staurosporine and 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine decreased the effectiveness of PMA-primed cytosol to complete the cell-free system, but had little effect on cytosol obtained from cells primed with retinal. The addition of protein phosphatase inhibitors, p-nitrophenyl phosphate or okadaic acid to neutrophil cavitates increased 3-fold the release of O2- in cell-free preparations of these cells. Okadaic acid and p-nitrophenyl phosphate also increased the effectiveness of both cytosol and light membranes to complete the cell-free system when combined with cytosol or light membranes from resting neutrophils, respectively, indicating that both fractions are affected by the inhibition of protein phosphatase activity. These data indicate that increases in protein phosphorylation alone do not lead to the activation of the NADPH-oxidase, but in addition to the requirement of an anionic amphiphile, the release of O2- from intact neutrophils or in the cell-free system is increased by stimulus activation of protein kinase C or more impressively by inhibition of protein phosphatase activity.  相似文献   

10.
11.
Shirato H  Shima H  Sakashita G  Nakano T  Ito M  Lee EY  Kikuchi K 《Biochemistry》2000,39(45):13848-13855
We have isolated human cDNA for a novel type 1 protein phosphatase (PP1) inhibitory protein, named inhibitor-4 (I-4), from a cDNA library of germ cell tumors. I-4, composed of 202 amino acids, is 44% identical to a PP1 inhibitor, inhibitor-2 (I-2). I-4 conserves functionally important structure of I-2 and exhibited similar biochemical properties. I-4 inhibited activity of the catalytic subunit of PP1 (PP1C), specifically with an IC(50) of 0.2 nM, more potently than I-2 with an IC(50) of 2 nM. I-4 weakly inhibited the activity of myosin-associated phosphates (PP1M). However, the level of inhibition of PP1M was increased during preincubation of PP1M with I-4, suggesting that the inhibition is caused by interaction of I-4 with PP1C in such a manner that it competes with the M subunit of PP1M. Gel overlay experiments showed that I-4 binds PP1C directly. Three I-4 peptides containing the N-terminal residues 1-123, 1-131, and 1-142 all showed strong binding ability to PP1C but did not show PP1 inhibitory activity, whereas an I-2 peptide (residues 1-134), lacking the corresponding C-terminal residues, potently inhibited PP1C activity as previously reported. Removal of the 18 N-terminal amino acid residues from I-4 dramatically reduced the PP1 binding activity with a correlated loss of inhibitory activity, whereas removal of the 10 N-terminal residues had only a little effect. The two peptides GST-I-4(19-131) and GST-I-4(132-202) showed ability to bind to PP1C, albeit very weakly. These results strongly suggest a multiple-point interaction between I-4 and PP1C, which is thought to cause the inhibition of I-4 which is stronger than the inhibition of I-2.  相似文献   

12.
Protein phosphatase inhibitor-1 is a prototypical mediator of cross-talk between protein kinases and protein phosphatases. Activation of cAMP-dependent protein kinase results in phosphorylation of inhibitor-1 at Thr-35, converting it into a potent inhibitor of protein phosphatase-1. Here we report that inhibitor-1 is phosphorylated in vitro at Ser-67 by the proline-directed kinases, Cdk1, Cdk5, and mitogen-activated protein kinase. By using phosphorylation state-specific antibodies and selective protein kinase inhibitors, Cdk5 was found to be the only kinase that phosphorylates inhibitor-1 at Ser-67 in intact striatal brain tissue. In vitro and in vivo studies indicated that phospho-Ser-67 inhibitor-1 was dephosphorylated by protein phosphatases-2A and -2B. The state of phosphorylation of inhibitor-1 at Ser-67 was dynamically regulated in striatal tissue by glutamate-dependent regulation of N-methyl-d-aspartic acid-type channels. Phosphorylation of Ser-67 did not convert inhibitor-1 into an inhibitor of protein phosphatase-1. However, inhibitor-1 phosphorylated at Ser-67 was a less efficient substrate for cAMP-dependent protein kinase. These results demonstrate regulation of a Cdk5-dependent phosphorylation site in inhibitor-1 and suggest a role for this site in modulating the amplitude of signal transduction events that involve cAMP-dependent protein kinase activation.  相似文献   

13.
Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5   总被引:3,自引:0,他引:3  
The Raf-MEK-ERK pathway couples growth factor, mitogenic and extracellular matrix signals to cell fate decisions such as growth, proliferation, migration, differentiation and survival. Raf-1 is a direct effector of the Ras GTPase and is the initiating kinase in this signalling cascade. Although Raf-1 activation is well studied, little is known about how Raf-1 is inactivated. Here, we used a proteomic approach to identify molecules that may inactivate Raf-1 signalling. Protein phosphatase 5 (PP5) was identified as an inactivator that associates with Raf-1 on growth factor stimulation and selectively dephosphorylates an essential activating site, Ser 338. The PP5-mediated dephosphorylation of Ser 338 inhibited Raf-1 activity and downstream signalling to MEK, an effect that was prevented by phosphomimetic substitution of Ser 338, or by ablation of PP5 catalytic function. Furthermore, depletion of endogenous PP5 increased cellular phospho-Ser 338 levels. Our results suggest that PP5 is a physiological regulator of Raf-1 signalling pathways.  相似文献   

14.
15.
Protein phosphatase 2A (PP2A) holoenzymes consist of a catalytic C subunit, a scaffolding A subunit, and one of several regulatory B subunits that recruit the AC dimer to substrates. PP2A is required for chromosome segregation, but PP2A's substrates in this process remain unknown. To identify PP2A substrates, we carried out a two-hybrid screen with the regulatory B/PR55 subunit. We isolated a human homolog of C. elegans HCP6, a protein distantly related to the condensin subunit hCAP-D2, and we named this homolog hHCP-6. Both C. elegans HCP-6 and condensin are required for chromosome organization and segregation. HCP-6 binding partners are unknown, whereas condensin is composed of the structural maintenance of chromosomes proteins SMC2 and SMC4 and of three non-SMC subunits. Here we show that hHCP-6 becomes phosphorylated during mitosis and that its dephosphorylation by PP2A in vitro depends on B/PR55, suggesting that hHCP-6 is a B/PR55-specific substrate of PP2A. Unlike condensin, hHCP-6 is localized in the nucleus in interphase, but similar to condensin, hHCP-6 associates with chromosomes during mitosis. hHCP-6 is part of a complex that contains SMC2, SMC4, kleisin-beta, and the previously uncharacterized HEAT repeat protein FLJ20311. hHCP-6 is therefore part of a condensin-related complex that associates with chromosomes in mitosis and may be regulated by PP2A.  相似文献   

16.
A glycogen synthase phosphatase was purified from the yeast Saccharomyces cerevisiae. The purified yeast phosphatase displayed one major protein band which coincided with phosphatase activity on nondenaturing polyacrylamide gel electrophoresis. This phosphatase had a molecular mass of about 160,000 Da determined by gel filtration and was comprised of three subunits, termed A, B, and C. The subunit molecular weights estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 60,000 (A), 53,000 (B), and 37,000 (C), indicating that this yeast glycogen synthase phosphatase is a heterotrimer. On ethanol treatment, the enzyme was dissociated to an active species with a molecular weight of 37,000 estimated by gel filtration. The yeast phosphatase dephosphorylated yeast glycogen synthase, rabbit muscle glycogen phosphorylase, casein, and the alpha subunit of rabbit muscle phosphorylase kinase, was not sensitive to heat-stable protein phosphatase inhibitor 2, and was inhibited 90% by 1 nM okadaic acid. Dephosphorylation of glycogen synthase, phosphorylase, and phosphorylase kinase by this yeast enzyme could be stimulated by histone H1 and polylysines. Divalent cations (Mg2+ and Ca2+) and chelators (EDTA and EGTA) had no effect on dephosphorylation of glycogen synthase or phosphorylase while Mn2+ stimulated enzyme activity by approximately 50%. The specific activity and kinetics for phosphorylase resembled those of mammalian phosphatase 2A. An antibody against a synthetic peptide corresponding to the carboxyl terminus of the catalytic subunit of rabbit skeletal muscle protein phosphatase 2A reacted with subunit C of purified yeast phosphatase on immunoblots, whereas the analogous peptide antibody against phosphatase 1 did not. These data show that this yeast glycogen synthase phosphatase has structural and catalytic similarity to protein phosphatase 2A found in mammalian tissues.  相似文献   

17.
Ceramide is a bioactive sphingolipid with many associated biological outcomes, yet there is a significant gap in our current understanding of how ceramide mediates these processes. Previously, ceramide has been shown to activate protein phosphatase (PP) 1 and 2A. While continuing this line of work, a late fraction from a Mono-Q column was consistently observed to be activated by ceramide, yet PP1 and PP2A were undetectable in this fraction. Proteomic analysis of this fraction revealed the identity of the phosphatase to be PP2Cγ/PPM1G. This was consistent with our findings that PP2Cγ 1-eluted in a high salt fraction due to its strongly acidic domain, and 2-was insensitive to okadaic acid. Further characterization was performed with PP2Cα, which showed robust activation by C(6)-ceramide. Activation was specific for the erythro conformation of ceramide and the presence of the acyl chain and hydroxyl group at the first carbon. In order to demonstrate more physiological activation of PP2Cα by ceramide, phospho-p38δ was utilized as substrate. Indeed, PP2Cα induced the dephosphorylation of p38δ only in the presence of C(16)-ceramide. Taken together, these results show that the PP2C family of phosphatases is activated by ceramide, which may have important consequences in mediating the biological effects of ceramide.  相似文献   

18.
A cDNA encoding a novel protein phosphatase catalytic subunit (protein phosphatase X) has been isolated from a rabbit liver library. It codes for a protein having 45% and 65% amino acid sequence identity, respectively, to the catalytic subunits of protein phosphatase 1 and protein phosphatase 2A from skeletal muscle. The enzyme is neither the hepatic form of protein phosphatase 1 or 2A, nor is it protein phosphatase 2B or 2C. The possible identity of protein phosphatase X is discussed.  相似文献   

19.
Inhibitor-1, the first identified endogenous inhibitor of protein phosphatase 1 (PP-1), was previously reported to be a substrate for cyclin-dependent kinase 5 (Cdk5) at Ser67. Further investigation has revealed the presence of an additional Cdk5 site identified by mass spectrometry and confirmed by site-directed mutagenesis as Ser6. Basal levels of phospho-Ser6 inhibitor-1, as detected by a phosphorylation state-specific antibody against the site, existed in specific regions of the brain and varied with age. In the striatum, basal in vivo phosphorylation and dephosphorylation of Ser6 were mediated by Cdk5, PP-2A, and PP-1, respectively. Additionally, calcineurin contributed to dephosphorylation under conditions of high Ca2+. In biochemical assays the function of Cdk5-dependent phosphorylation of inhibitor-1 at Ser6 and Ser67 was demonstrated to be an intramolecular impairment of the ability of inhibitor-1 to be dephosphorylated at Thr35; this effect was recapitulated in two systems in vivo. Dephosphorylation of inhibitor-1 at Thr35 is equivalent to inactivation of the protein, as inhibitor-1 only serves as an inhibitor of PP-1 when phosphorylated by cAMP-dependent kinase (PKA) at Thr35. Thus, inhibitor-1 serves as a critical junction between kinase- and phosphatase-signaling pathways, linking PP-1 to not only PKA and calcineurin but also Cdk5.  相似文献   

20.
Protein phosphatase 5 (Ppp5) is a serine/threonine protein phosphatase comprising a regulatory tetratricopeptide repeat (TPR) domain N-terminal to its phosphatase domain. Ppp5 functions in signalling pathways that control cellular responses to stress, glucocorticoids and DNA damage. Its phosphatase activity is suppressed by an autoinhibited conformation maintained by the TPR domain and a C-terminal subdomain. By interacting with the TPR domain, heat shock protein 90 (Hsp90) and fatty acids including arachidonic acid stimulate phosphatase activity. Here, we describe the structure of the autoinhibited state of Ppp5, revealing mechanisms of TPR-mediated phosphatase inhibition and Hsp90- and arachidonic acid-induced stimulation of phosphatase activity. The TPR domain engages with the catalytic channel of the phosphatase domain, restricting access to the catalytic site. This autoinhibited conformation of Ppp5 is stabilised by the C-terminal alphaJ helix that contacts a region of the Hsp90-binding groove on the TPR domain. Hsp90 activates Ppp5 by disrupting TPR-phosphatase domain interactions, permitting substrate access to the constitutively active phosphatase domain, whereas arachidonic acid prompts an alternate conformation of the TPR domain, destabilising the TPR-phosphatase domain interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号