首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A rapid method for recording three-dimensional triple-resonance experiments utilising pulsed field gradient techniques is proposed, and applied to the HNCO experiment. In order to optimise the sensitivity of the method, a short phase cycle is used in conjunction with the pulsed field gradients to select the desired coherence transfer pathway. The method is demonstrated for the HU protein.  相似文献   

2.
Several methods are available for determining the volumetric oxygen transfer coefficient in bioreactors, though their application in industrial bioprocess has been limited. To be practically useful, mass transfer measurements made in nonfermenting systems must be consistent with observed microbial respiration rates. This report details a procedure for quantifying the relationship between agitation frequency and oxygen transfer rate that was applied in stirred-tank bioreactors used for clinical biologics manufacturing. The intrinsic delay in dissolved oxygen (DO) measurement was evaluated by shifting the bioreactor pressure and fitting a first-order mathematical model to the DO response. The dynamic method was coupled with the DO lag results to determine the oxygen transfer rate in Water for Injection (WFI) and a complete culture medium. A range of agitation frequencies was investigated at a fixed air sparge flow rate, replicating operating conditions used in Pichia pastoris fermentation. Oxygen transfer rates determined by this method were in excellent agreement with off-gas calculations from cultivation of the organism (P = 0.1). Fermentation of Escherichia coli at different operating parameters also produced respiration rates that agreed with the corresponding dynamic method results in WFI (P = 0.02). The consistency of the dynamic method results with the off-gas data suggests that compensation for the delay in DO measurement can be combined with dynamic gassing to provide a practical, viable model of bioreactor oxygen transfer under conditions of microbial fermentation.  相似文献   

3.
The function of biomolecules is intrinsically linked to their structure and the complexes they form during function. Techniques for the determination of structures and dynamics of these nanometre assemblies are therefore important for an understanding on the molecular level. PELDOR (pulsed electron-electron double resonance) is a pulsed EPR method that can be used to reliably and precisely measure distances in the range 1.5-8?nm, to unravel orientations and to determine the number of monomers in complexes. In conjunction with site-directed spin labelling, it can be applied to biomolecules of all sizes in aqueous solutions or membranes. PELDOR is therefore complementary to the methods of X-ray crystallography, NMR and FRET (fluorescence resonance energy transfer) and is becoming a powerful method for structural determination of biomolecules. In the present review, the methods of PELDOR are discussed and examples where PELDOR has been used to obtain structural information on biomolecules are summarized.  相似文献   

4.
A study of mass transfer in yeast in a pulsed baffled bioreactor   总被引:1,自引:0,他引:1  
We report experimental data of mass transfer of oxygen into yeast resuspension in a pulsed baffled bioreactor. The bioreactor consists of a 50-mm-diameter column with the presence of a series of either wall (orifice) or central (disc) baffles or a mixture of both where fluid oscillation can also be supermposed during the experiments. Air bubbles are sparged into the bottom of the pulsed baffled bioreactor, and the kinetics of liquid oxygen concentration in the yeast solution is followed using a dissolved oxygen probe with a fast response time of 3 s together with the dynamic gassing-out technique. Among the three different baffle geometries investigated, the orifice baffles gave the highest and sharpest increase in the oxygen transfer rate, and the trends in the k(L)a measurements are consistent with the fluid mechanics observed within both the systems and previous work. In addition, we have also compared the k(L)a values with those obtained in a stirred tank; an 11% increase in the K(L)a is reported. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
Nonlinear dielectric spectroscopy (NLDS) was used to detect interaction of a pulsed magnetic field (PMF) with membrane protein dynamics in aggregating Dictyostelium discoideum amoebae. In the experiments reported here, a strong nonlinear dielectric response of Dictyostelium discoideum cells is shown, and a distinctive nonlinear dielectric response of cells previously exposed to PMF is shown. The method of NLDS is shown to be capable of monitoring and charting the dynamic frequency response of the cell to an electromagnetic field.  相似文献   

6.
A new method for measuring the gas-kinetic pressure in pulsed plasma flows is developed in which an acoustic line in the form of a thin rod built in the optical scheme of a laser interferometer is used as a detector. The time evolution of the gas-kinetic pressure in particle flows emerging from a micropinch discharge (a low-inductance vacuum spark) was studied. Due to the wide dynamic range of the method (~105), it can be applied in various plasma devices with a wide range of parameters.  相似文献   

7.
A Novel Method for Detection of Endo-Xyloglucan Transferase   总被引:1,自引:0,他引:1  
A new approach has been developed for quantification of theactivity of endo-xyloglucan transferase, a novel enzyme thatmediates the transfer of a segment of one xyloglucan moleculeto another xyloglucan molecule. Purified xyloglucans with definedmolecular-weight distributions and their fluorescent derivatives(pyridylamino xyloglucans) were used as substrates for the enzymaticreaction. The transferase activity was quantified by monitoringchanges in molecular-weight distributions of substrates by analkali compatible gel permeation chromatographic system, equippedwith a pulsed amperometric detector and a fluorescence detector.This new method was applied to the rapid detection and characterizationof a novel transferase derived from plant tissues. (Received February 28, 1992; Accepted September 28, 1992)  相似文献   

8.
The penetration of ultrasonic waves through opaque media and the large difference in the acoustic properties between air bubbles and the fermentation broth were used to measure the energy attenuation of pulsed ultrasound by the bubbles as the waves passed through the broth. This leads to an on-line determination of the specific interfacial area provided information is available about the holdup or bubble mean diameter. This article gives the principle of the method and demonstrates how the measured interfacial area may be used in evaluating the mass transfer coefficient of a fermentation system in a bubble column.  相似文献   

9.
A simplified model of a cathode sheath sustained by electron avalanches is presented. The model is used to calculate the pulsed mode of a negative corona in nitrogen in order to establish the physical picture of the processes occurring in a pulsed corona. The most important point is that, in the pulsed mode, both the averaged and dynamic current-voltage characteristics of a glow cathode sheath are found to have a negative slope. Lowering the degree to which the glow cathode sheath is subnormal (by sharply reducing the sheath area) or switching on additional ionization mechanisms (e.g., stepwise ionization) that force the cathode sheath to evolve into a prearc spot causes the negative slopes of the averaged and dynamic current-voltage characteristics of the sheath to become more gradual and even positive, thereby stabilizing the discharge current.  相似文献   

10.
Cobalamin-dependent enzymes enhance the rate of C–Co bond cleavage by up to ∼1012-fold to generate cob(II)alamin and a transient adenosyl radical. In the case of the pyridoxal 5′-phosphate (PLP) and cobalamin-dependent enzymes lysine 5,6-aminomutase and ornithine 4,5 aminomutase (OAM), it has been proposed that a large scale domain reorientation of the cobalamin-binding domain is linked to radical catalysis. Here, OAM variants were designed to perturb the interface between the cobalamin-binding domain and the PLP-binding TIM barrel domain. Steady-state and single turnover kinetic studies of these variants, combined with pulsed electron-electron double resonance measurements of spin-labeled OAM were used to provide direct evidence for a dynamic interface between the cobalamin and PLP-binding domains. Our data suggest that following ligand binding-induced cleavage of the Lys629-PLP covalent bond, dynamic motion of the cobalamin-binding domain leads to conformational sampling of the available space. This supports radical catalysis through transient formation of a catalytically competent active state. Crucially, it appears that the formation of the state containing both a substrate/product radical and Co(II) does not restrict cobalamin domain motion. A similar conformational sampling mechanism has been proposed to support rapid electron transfer in a number of dynamic redox systems.  相似文献   

11.
《Ecological Engineering》2005,24(3):157-174
Tools for modeling pulsed flows and constituent fluxes in wetlands, although well developed in theory, have not been well tested in practice. High-frequency monitoring of suspended solids and flows in a stormwater treatment wetland enabled application and analysis of these tools. A dynamic flow- and volume-weighted time variable, analogous to the retention time in steady-flow systems, is one important tool tested in this study. Cross-correlations with time lags demonstrated that the dynamic time variable was a better predictive variable of pulsed events than was the standard, static time variable. Although plug-flow models are typically used for steady-flow wetlands, residence time distribution (RTD) models are indispensable for describing pulsed flows and constituent fluxes in wetlands. This study demonstrated that RTD modeling with reaction kinetics of suspended solids during storm events produces a better explanation of outflow data than possible with steady, plug-flow models. Using only input and output data, an RTD model explained sedimentation rates with less unexplained variance than the standard, plug-flow model. The results of this study underscore the importance and utility of RTD modeling for complex flows.  相似文献   

12.
In order to develop effective counter measures to cardiovascular maladaptation associated with space flight, it is essential to know how dynamic characteristics of blood pressure regulation are altered in space. The open-loop transfer characteristics of the carotid sinus baroreflex can be divided into the neural arc and peripheral arc transfer functions (Ikeda et al. 1996). The neural arc transfer function represents the dynamic input-output characteristics from arterial pressure (AP) to efferent sympathetic nerve activity (SNA), while the peripheral arc transfer function represents those from SNA to AP. Although AP perturbation according to a white noise sequence can be used to estimate the transfer functions under baroreflex closed-loop conditions (Kwanda et al. 1997), arterial catheter implantation necessary to perturb AP limits the applicability of this method to freely moving animal experiments. To overcome this problem, we explored the closed-loop system identification method using electrical stimulation. We used aortic depressor nerve (ADN) stimulation and rapid pacing (RP) of the heart to perturb the arterial baroreflex system.  相似文献   

13.
The first step in the catalytic cycle of cytochrome oxidase, the one-electron reduction of the fully oxidized enzyme, was investigated using a new photoactive binuclear ruthenium complex, [Ru(bipyrazine)2]2(quaterpyridine), (Ru2Z). The aim of the work was to examine differences in the redox kinetics resulting from pulsing the oxidase (i.e., fully reducing the enzyme followed by reoxidation) just prior to photoreduction. Recent reports indicate transient changes in the redox behavior of the metal centers upon pulsing. The new photoreductant has a large quantum yield, allowing the kinetics data to be acquired in a single flash. The net charge of +4 on Ru2Z allows it to bind electrostatically near CuA in subunit II of cytochrome oxidase. The photoexcited state Ru(II*) of Ru2Z is reduced to Ru(I) by the sacrificial electron donor aniline, and Ru(I) then reduces CuA with yields up to 60%. A stopped-flow-flash technique was used to form the pulsed state of cytochrome oxidase (the "OH" state) from several sources (bovine heart mitochondria, Rhodobacter sphaeroides, and Paracoccus denitrificans). Upon mixing the fully reduced anaerobic enzyme with oxygenated buffer containing Ru2Z, the oxidized OH state was formed within 5 ms. Ru2Z was then excited with a laser flash to inject one electron into CuA. Electron transfer from CuA --> heme a --> heme a3/CuB was monitored by optical spectroscopy, and the results were compared with the enzyme that had not been pulsed to the OH state. Pulsing had a significant effect in the case of the bovine oxidase, but this was not observed with the bacterial oxidases. Electron transfer from CuA to heme a occurred with a rate constant of 20,000 s-1 with the bovine cytochrome oxidase, regardless of whether the enzyme had been pulsed. However, electron transfer from heme a to the heme a3/CuB center in the pulsed form was 63% complete and occurred with biphasic kinetics with rate constants of 750 s-1 and 110 s-1 and relative amplitudes of 25% and 75%. In contrast, one-electron injection into the nonpulsed O form of the bovine oxidase was only 30% complete and occurred with monophasic kinetics with a rate constant of 90 s-1. This is the first indication of a difference between the fast form of the bovine oxidase and the pulsed OH form. No reduction of heme a3 is observed, indicating that CuB is the initial electron acceptor in the one-electron reduced pulsed bovine oxidase.  相似文献   

14.
Productivity in many fungal fermentations is detrimentally affected by high broth viscosity and consequent reduced oxygen mass transfer capacity. The goal here was to determine whether pulsed feeding of limiting carbon in a fungal fermentation could lead to reduced viscosity and improved oxygen mass transfer. As a model, an industrially relevant recombinant strain of Aspergillus oryzae was grown in carbon-limited, fed-batch mode. Maltodextrin was used as a carbon source and was added either continuously or in 1.5-min pulses, 3.5 min apart. In both feeding modes the same total amount of carbon was added, and carbon feed rate was at sufficiently low levels to ensure cultures were always carbon-limited. Compared to continuous feeding, pulsed addition of substrate led to smaller fungal elements, which resulted in a significant reduction in broth viscosity. This in turn led to higher dissolved oxygen concentrations and increased oxygen uptake rates during pulsed feeding.  相似文献   

15.
Mechanics of a constrained chair-rise   总被引:1,自引:0,他引:1  
A sit-to-stand task is analyzed by a method which estimates the segmental and whole body center of mass (CoM) kinematics and kinetics using bilateral whole body kinematic data from nine healthy young female subjects. The sit-to-stand, or chair-rise, task is constrained with regard to chair height, pace, initial lower limb position and arm use. The chair-rise maneuver is divided into four phases; (1) the flexion momentum phase; (2) the momentum transfer phase; (3) the vertical extension phase; and (4) the stabilization phase; the first three are examined in detail here. The momentum transfer phase, which immediately follows lift-off from the seat of the chair, is the most dynamic portion of the event, demanding a high degree of coordination. This maneuver is analyzed in order to determine if trunk movement is used only to position the body center of gravity or if the trunk motion generates momentum which is important during the brief but critical period of dynamic equilibrium immediately following lift-off from the chair. Our evidence points to the latter case and indicates that inter-segmental momentum transfer is possible during this period.  相似文献   

16.
This study aimed to evaluate molecular typing methods useful for standardization of strains in experimental work on dermatophilosis. Fifty Dermatophilus congolensis isolates, collected from sheep, cattle, horse and a deer, were analyzed by randomly amplified polymorphic DNA (RAPD) method using twenty-one different primers, and the results were compared with those obtained by typing with a pulsed field gel electrophoresis (PFGE) method using the restriction digest enzyme Sse8387I. The typeability, reproducibility and discriminatory power of RAPD and Sse8387I-PFGE typing were calculated. Both typing methods were highly reproducible. Of the two techniques, Sse8387I-PFGE was the least discriminating (Dice Index (DI), 0.663) and could not distinguish between epidemiologically related isolates, whereas RAPD showed an excellent discriminatory power (DI, 0.7694-0.9722). Overall, the degree of correlation between RAPD and PFGE typing was significantly high (r, 0.8822). We conclude that the DNA profiles generated by either RAPD or PFGE can be used to differentiate epidemiologically unrelated isolates. The results of this study strongly suggest that at least two independent primers are used for RAPD typing in order to improve its discriminatory power, and that PFGE is used for confirmation of RAPD results.  相似文献   

17.
Three-dimensional dynamic suspension is becoming an effective cell culture method for a wide range of bioprocesses, with an increasing number of bioreactors proposed for this purpose. The complex hydrodynamics establishing within these devices affects bioprocess outcomes and efficiency, and usually expensive in vitro trial-and-error experiments are needed to properly set the working parameters.Here we propose a methodology to define a priori the hydrodynamic working parameters of a dynamic suspension bioreactor, selected as a test case because of the complex hydrodynamics characterizing its operating condition. A combination of computational and analytical approaches was applied to generate operational guideline graphs for defining a priori specific working parameters. In detail, 43 simulations were performed under pulsed flow regime to characterize advective transport within the device depending on different operative conditions, i.e., culture medium flow rate and its duty cycle, cultured particle diameter, and initial particle suspension volume. The operational guideline graphs were then used to set specific hydrodynamic working parameters for an in vitro proof-of-principle test, where human induced pluripotent stem cell (hiPSC) aggregates were cultured for 24 h within the bioreactor. The in vitro findings showed that, under the selected pulsed flow regime, sedimentation was avoided, hiPSC aggregate circularity and viability were preserved, and culture heterogeneity was reduced, thus confirming the appropriateness of the a priori method. This methodology has the potential to be adaptable to other dynamic suspension devices to support experimental studies by providing in silico-based a priori knowledge, useful to limit costs and to optimize culture bioprocesses.  相似文献   

18.
The Multiple Air-lift Loop reactor (MAL) is a new type of bioreactor, in which a series of airlifts with internal loops is incorporated into one vessel. As such, the MAL is an approximation of an aerated plug-flow fermenter. Gas/liquid oxygen transfer was studied as a function of the gas flow rate in a MAL. The second MAL-compartment in the series was investigated in particular, and a Rectangular Air-lift Loop reactor (RAL) was used as a reference. Both a dynamic and a steady-state method were used for the determination of the overall volumetric oxygen-transfer coefficient. Both methods gave the same results. The oxygen transfer coefficient in the second MAL-compartment was low compared to that of conventional internal-loop reactors. Wall effects probably caused bubble coalescence and a reduction in the oxygen transfer. For the RAL it was found that oxygen transfer was comparable to that in a bubble column.  相似文献   

19.
Introduction: Recent studies have shown that pulsed electromagnetic field (EMF) has therapeutic potential for dementia, but the associated neurobiological effects are unclear. This study aimed to determine the effects of pulsed EMF on Streptozotocin (STZ)-induced dementia rats.Methods: Forty Sprague-Dawley rats were randomly allocated to one of the four groups: (i) control, (ii) normal saline injection (sham group), (iii) STZ injection (STZ group) and (iv) STZ injection with pulsed EMF exposure (PEMF, 10 mT at 20 Hz) (STZ + MF group). Morris water maze was used to assess the learning and memory abilities. Insulin growth factors 1 and 2 (IGF-1 and IGF-2) gene expression were determined by quantitative PCR. Results: The results showed that the mean escape latency in STZ-induced dementia rats was reduced by 66% under the exposure of pulsed EMF. Compared with the STZ group, the swimming distance and the time for first crossing the platform decreased by 55 and 41.6% in STZ + MF group, respectively. Furthermore, the IGF-2 gene expression significantly increased compared to that of the STZ group. Conclusions: Our findings indicate that the pulsed EMF exposure can improve the ability of learning and memory in STZ-induced dementia rats and this effect may be related to the process of IGF signal transduction, suggesting a potential role for the pulsed EMF for the amelioration of cognition impairment.  相似文献   

20.
The ability of activated B cells to protect against various experimental autoimmune or allergic diseases makes them attractive for use in cell-based therapies. We describe an efficient way to generate B cells with strong suppressive functions by incubating naive B cells with a relevant Ag conjugated to cholera toxin B subunit (CTB). This allows most B cells, irrespective of BCR, to take up and present Ag and induces their expression of latency-associated polypeptide (LAP)/TGF-β and after adoptive transfer also their production of IL-10. With OVA as model Ag, when naive T cells were cocultured in vitro with B cells pretreated with OVA conjugated to CTB (OVA/CTB) Ag-specific CD4(+) Foxp3 regulatory T (Treg) cells increased >50-fold. These cells effectively suppressed CD25(-)CD4(+) effector T (Teff) cells in secondary cultures. Adoptive transfer of OVA/CTB-treated B cells to mice subsequently immunized with OVA in CFA induced increase in Foxp3 Treg cells together with suppression and depletion of Teff cells. Likewise, adoptive transfer of B cells pulsed with myelin oligodendrocyte glycoprotein peptide(35-55) (MOGp) conjugated to CTB increased the number of Treg cells, suppressed MOGp-specific T cell proliferation and IL-17 and IFN-γ production, and prevented the development of experimental autoimmune encephalomyelitis. Similar effects were seen when B cells were given "therapeutically" to mice with early-stage experimental autoimmune encephalomyelitis. Our results suggest that B cells pulsed in vitro with relevant Ag/CTB conjugates may be used in cell therapy to induce Ag-specific suppression of autoimmune disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号