首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Determination of a 28,793-base-pair DNA sequence of a region from the Azotobacter vinelandii genome that includes and flanks the nitrogenase structural gene region was completed. This information was used to revise the previously proposed organization of the major nif cluster. The major nif cluster from A. vinelandii encodes 15 nif-specific genes whose products bear significant structural identity to the corresponding nif-specific gene products from Klebsiella pneumoniae. These genes include nifH, nifD, nifK, nifT, nifY, nifE, nifN, nifX, nifU, nifS, nifV, nifW, nifZ, nifM, and nifF. Although there are significant spatial differences, the identified A. vinelandii nif-specific genes have the same sequential arrangement as the corresponding nif-specific genes from K. pneumoniae. Twelve other potential genes whose expression could be subject to nif-specific regulation were also found interspersed among the identified nif-specific genes. These potential genes do not encode products that are structurally related to the identified nif-specific gene products. Eleven potential nif-specific promoters were identified within the major nif cluster, and nine of these are preceded by an appropriate upstream activator sequence. A + T-rich regions were identified between 8 of the 11 proposed nif promoter sequences and their upstream activator sequences. Site-directed deletion-and-insertion mutagenesis was used to establish a genetic map of the major nif cluster.  相似文献   

2.
The nifV gene products from Azotobacter vinelandii and Klebsiella pneumoniae share a high level of primary sequence identity and are proposed to catalyze the synthesis of homocitrate. While searching for potential nif (nitrogen fixation) genes within the genomic region located downstream from the nifN-B gene of Clostridium pasteurianum, we observed two open reading frames (ORFs) whose deduced amino acid sequences exhibit nonoverlapping sequence identity to different portions of the nifV gene products from A. vinelandii and K. pneumoniae. Conserved regions were located between the C-terminal 195 amino acid residues of the first ORF and the C-terminal portion of the nifV gene product and between the entire sequence of the second ORF (269 amino acid residues) and the N-terminal portion of the nifV gene product. We therefore designated the first ORF nifV omega and the second ORF nifV alpha. The deduced amino acid sequences of nifV omega and nifV alpha were also found to have sequence similarity when compared with the primary sequence of the leuA gene product from Salmonella typhimurium, which encodes alpha-isopropylmalate synthase. Marker rescue experiments were performed by recombining nifV omega and nifV alpha from C. pasteurianum, singly and in combination, into the genome of an A. vinelandii mutant strain which has an insertion and a deletion mutation located within its nifV gene. A NifV+ phenotype was obtained only when both the C. pasteurianum nifV omega and nifV alpha genes were introduced into the chromosome of this mutant strain. These results suggest that the nifV omega and nifV alpha genes encode separate domains, both of which are required for homocitrate synthesis in C. pasteurianum.  相似文献   

3.
4.
5.
Lei S  Pulakat L  Gavini N 《FEBS letters》2000,482(1-2):149-153
Azotobacter vinelandii carries three different and genetically distinct nitrogenase systems on its chromosome. Expression of all three nitrogenases is repressed by high concentrations of fixed nitrogen. Expression of individual nitrogenase systems is under the control of specific metal availability. We have isolated a novel type of A. vinelandii DJ54 revertant, designated A. vinelandii BG54, which carries a defined deletion in the nifH gene and is capable of diazotrophic growth in the presence of molybdenum. Inactivation of nifDK has no effect on growth of this mutant strain in nitrogen-free medium suggesting that products of the nif system are not involved in supporting diazotrophic growth of A. vinelandii BG54. Similar to the wild type, A. vinelandii BG54 is also sensitive to 1 mM tungsten. Tn5-B21 mutagenesis to inactivate the genes specific to individual systems revealed that the structural genes for vnf nitrogenase are required for diazotrophic growth of A. vinelandii BG54. Analysis of promoter activity of different nif systems revealed that the vnf promoter is activated in A. vinelandii BG54 in the presence of molybdenum. Based on these data we conclude that A. vinelandii BG54 strain utilizes vnf nitrogenase proteins to support its diazotrophic growth.  相似文献   

6.
The fixA, fixB, fixC, and fixX genes of Rhizobium meliloti 1021 constitute an operon and are required for nitrogen fixation in alfalfa nodules. DNA homologous to the R. meliloti fixABC genes is present in all other Rhizobium and Bradyrhizobium species examined, but fixABC-homologous sequences were found in only one free-living diazotroph, Azotobacter vinelandii. To determine whether the fixABCX genes share sequence homology with any of the 17 Klebsiella pneumoniae nif genes, we determined the entire nucleotide sequence of the fixA, fixB, fixC, and fixX genes and defined four open reading frames that code for polypeptides of molecular weights 31,146, 37,786, 47,288, and 10,937, respectively. Neither DNA nor amino acid sequence homology to the R. meliloti fixA, -B, -C, and -X genes was found in the K. pneumoniae nif operon. The fixX gene contains a cluster of cysteine residues characteristic of ferredoxins and is highly homologous to an Azotobacter ferredoxin which has been shown to donate electrons to nitrogenase. The fixABC operon contains a promoter region that is highly homologous to other nifA-activated promoters. We also found a duplication of the 5' end of the fixABCX operon; a 250-bp region located 520 bp upstream of the fixABCX promoter bears more than 65% homology to the 5' end of the transcribed region, including the first 32 codons of fixA.  相似文献   

7.
We sequenced the nitrogen fixation regulatory gene nfrX from Azotobacter vinelandii, mutations in which cause a Nif- phenotype, and found that it encodes a 105-kDa protein (NfrX), the N terminus of which is highly homologous to that of the uridylyltransferase-uridylyl-removing enzyme encoded by glnD in Escherichia coli. In vivo complementation experiments demonstrate that the glnD and nfrX products are functionally interchangeable. A vinelandii nfrX thus appears to encode a uridylyltransferase-uridylyl-removing enzyme, and in this paper we report the first sequence of such a protein. The Nif- phenotype of nfrX mutants can be suppressed by a second mutation in a recently identified nifL-like gene immediately upstream of nifA in A. vinelandii. NifL mediates nif regulation in response to the N status in A. vinelandii, presumably by inhibiting NifA activator function as occurs in Klebsiella pneumoniae; thus, one role of NfrX is to modify, either directly or indirectly, the activity of the nifL product.  相似文献   

8.
9.
10.
We report the complete DNA sequence of the Klebsiella pneumoniae nifH gene, the gene which codes for component 2 (Fe protein or nitrogenase reductase) of the nitrogenase enzyme complex. The amino acid sequence of the K. pneumoniae nitrogenase Fe protein is deduced from the DNA sequence. The K. pneumoniae Fe protein contains 292 amino acids, has a Mr = 31,753, and contains 9 cysteine residues. We compare the amino acid sequence of the K. pneumoniae protein with available amino acid sequence data on nitrogenase Fe proteins from two other species, Clostridium pasteurianum and Azotobacter vinelandii. The C. pasteurianum Fe protein, for which the complete sequence is known, shows 67% homology with the K. pneumoniae Fe protein. Extensive regions of strong conservation (90-95%) are found, while other regions show relatively poor conservation (30-35%). It is suggested that these strongly conserved regions are of special importance to the function of this enzyme, and the findings are discussed in the light of evolutionary theories on the origin of nif genes.  相似文献   

11.
A nif gene probe from Rhizobium meliloti was used to isolate a recombinant bacteriophage from a Frankia sp. ArI3 gene bank. There is a large homology between nif D and nif H genes of R. meliloti or Klebsiella pneumoniae and Frankia DNA sequences. Approximately 4.5 kb to the right of nif K, we have localized a DNA region hybridizing to a R. meliloti probe containing nif A and nif B genes. The extent of the homology was greater for nif B than for nif A.  相似文献   

12.
The nucleotide sequence of the nifA gene from Azotobacter vinelandii was determined. This gene encodes an Mr = 58,100 polypeptide that shares significant sequence identity when compared to nifA-encoded products from other organisms. Interspecies comparisons of nifA-encoded products reveal that they all have a consensus ATP binding site and a consensus DNA binding site in highly conserved regions of the respective polypeptides. The nifA gene immediately precedes the nifB-nifQ gene region but is unlinked to the major nif gene cluster from A. vinelandii. A potential regulatory gene precedes and is apparently cotranscribed with nifA. Mutant strains that have a deletion or a deletion plus an insertion within nifA are incapable of diazotrophic growth and they fail to accumulate nitrogenase structural gene products.  相似文献   

13.
14.
A single large plasmid was isolated from multiplasmid-harboring strains Rhizobium leguminosarum 1001 and R. trifolii 5. These single plasmids, as well as the largest plasmid detectable in R. phaseoli 3622, hybridized with part of the nif structural genes of Klebsiella pneumoniae. In contrast, the plasmids of R. meliloti strains V7 and L5-30 did not show hybridization with the nif genes of K. pneumoniae, indicating that these genes might be located either on the chromosome or on a much larger plasmid which as yet has not been isolated. Studies of the homology between plasmids of fast-growing Rhizobium species showed that a specific deoxyribonucleic acid sequence, which carries the structural genes for nitrogenase, is highly conserved on a plasmid in R. leguminosarum, R. trifolii, and R. phaseoli. Furthermore, it was found that this type of plasmid in the different species shares extensive deoxyribonucleic acid homology, suggesting that strains in the R. leguminosarum cluster have preserved a nif plasmid.  相似文献   

15.
16.
17.
18.
Functional genes coding for the structural components of the nitrogenase complex (nifH,D,K) have been cloned on an 11.8-kilobase-pair HindIII fragment of DNA from the photosynthetic bacterium Rhodopseudomonas capsulata. The genes were physically mapped by hybridization of individual cloned nif genes from Klebsiella pneumoniae and Anabaena sp. strain 7120 to Southern blots of HindIII digests of the cloned R. capsulata fragment, after introduction of HindIII sites into the latter at specified locations by insertion of Tn5. Plasmids with the 11.8-kilobase-pair HindIII fragment containing the Tn5 insertions were also used for complementation tests with chromosomal Nif- mutations and for the generation of subfragments to locate those mutations by marker rescue. The R. capsulata nifH,D,K genes comprise a single unit of expression, with the same organization and polarity as found in K. pneumoniae. However, the R. capsulata nifH,D,K fragment did not complement Nif- point mutations in the corresponding Klebsiella genes, and the Klebsiella nif genes did not function in R. capsulata.  相似文献   

19.
The nucleotide sequence of a region of the Azotobacter vinelandii genome exhibiting sequence similarity to nifH has been determined. The order of open reading frames within this 6.1-kilobase-pair region was found to be anfH (alternative nitrogen fixation, nifH-like gene), anfD (nifD-like gene), anfG (potentially encoding a protein similar to the product of vnfG from Azotobacter chroococcum), anfK (nifK-like gene), followed by two additional open reading frames. The 5'-flanking region of anfH contains a nif promoter similar to that found in the A. vinelandii nifHDK gene cluster. The presumed products of anfH, anfD, and anfK are similar in predicted Mr and pI to the previously described subunits of nitrogenase 3. Deletion plus insertion mutations introduced into the anfHDGK region of wild-type strain A. vinelandii CA resulted in mutant strains that were unable to grow in Mo-deficient, N-free medium but grew in the presence of 1 microM Na2MoO4 or V2O5. Introduction of the same mutations into the nifHDK deletion strain CA11 resulted in strains that grew under diazotrophic conditions only in the presence of vanadium. The lack of nitrogenase 3 subunits in these mutant strains was demonstrated through two-dimensional gel analysis of protein extracts from cells derepressed for nitrogenase under Mo and V deficiency. These results indicate that anfH, anfD, and anfK encode structural proteins for nitrogenase 3.  相似文献   

20.
Molecular cloning of nif DNA from Azotobacter vinelandii.   总被引:6,自引:5,他引:1  
Two clones which contained nif DNA were isolated from a clone bank of total EcoRI-digested Azotobacter vinelandii DNA. The clones carrying the recombinant plasmids were identified by use of the 32P-labeled 6.2-kilobase (kb) nif insert from pSA30 (which contains the Klebsiella pneumoniae nifK, nifD, and nifH genes) as a hybridization probe. Hybridization analysis with fragments derived from the nif insert of pSA30 showed that the 2.6-kb insert from one of the plasmids (pLB1) contains nifK whereas the 1.4-kb insert from the other plasmid (pLB3) contains nifD. Marker rescue tests using genetic transformation indicated that the 2.6-kb A. vinelandii nif fragment contains the wild-type alleles for the nif-6 and nif-38 mutations carried by Nif- strains UW6 and UW38. The 1.4-kb insert contains the wild-type allele for the nif-10 mutation carried by Nif- strain UW10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号