首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
K Araki  H Maeda  J Wang  D Kitamura  T Watanabe 《Cell》1988,53(5):723-730
The expression of the rearranged human immunoglobulin gamma 1 heavy chain gene (HIG1) was shown to be induced through its enhancer by the positive regulatory trans-acting factor(s) that was contained only in cells of B lineage. The trans-acting factors were purified from mouse myeloma NS1 cells, and HIG1-inducing activity was found mainly in fractions of molecular weight 53-127 kd and in a fraction eluted from a heparin-Sepharose column with 0.5 M KCI. This semipurified fraction contained proteins binding to the conserved octamer sequence, ATGCAAAT, in the promoter region, as well as to sequences in the enhancer region. The 0.5 M KCI eluates from a heparin-Sepharose column were applied to a DNA affinity column of synthetic oligonucleotides of the octamer sequence and the sequence TATTTTAGGAAGCAAA in the HpaII-BgIII region of the HIG1 gene enhancer. The protein eluted from the enhancer sequence-specific DNA affinity column showed a strong inducing activity for the HIG1 gene, and the molecular weight of a predominant protein was 96 kd.  相似文献   

2.
3.
An enhancer binding factor, designated KBF1, has been purified from the nuclear extract of mouse BW5147 thymoma cells by five column chromatography steps including a sequence-specific DNA affinity column. Gel retardation and footprint analysis have shown that purified KBF1 has a binding activity specific for both H-2 and beta 2-microglobulin enhancer sequences. After SDS-polyacrylamide gel electrophoresis of the most purified preparation a 48-kd protein showed, after elution and renaturation, a binding activity to both enhancer sequences. These findings suggest that the expression of both H-2 and beta 2-microglobulin genes utilizes a common regulatory mechanism.  相似文献   

4.
Purification of the D-2 dopamine receptor from bovine striatum   总被引:2,自引:0,他引:2  
The D-2 dopamine receptor has been purified 21500 fold from bovine striatal membranes. Solubilized receptor preparation was partially purified by affinity chromatography on a haloperidol adsorbent followed by gel filtration on a Sephacryl S-300 column. The fractions eluted from this column which contained the ligand binding activity were further chromatographed on wheat germ agglutinin conjugated to Sepharose. The resulting receptor preparation displays a major polypeptide band of an apparent molecular weight of 92 kDa, and exhibits a specific binding activity of 2490 pmol spiperone per mg protein. This purified receptor preparation can reabsorb specifically to the haloperidol affinity column indicating that the 92 kDa polypeptide represents the ligand binding unit of the D-2 dopamine receptor.  相似文献   

5.
Two major subclasses of simian virus 40 tumor antigen were prepared from productively infected monkey cells. These subclasses can be distinguished by their sedimentation properties: one tumor antigen form sediments at 5-6S and the other at 14-16S. The DNA-binding properties of these subclasses were investigated by two different experimental procedures. In the first procedure, the DNA binding of subclasses of crude tumor antigen, separated by zone velocity sedimentation, were assayed by immunoprecipitation of the DNA-protein complexes. In the second procedure, the two tumor antigen forms were partially purified by column chromatography and DNA binding was tested in a filter binding assay. Both procedures gave comparable results. (a) The 5-6-S and the 14-16-S tumor antigen bound specifically to a DNA restriction fragment containing the viral genome control regions. (b) At low salt concentrations, both subclasses bound to specific and to nonspecific DNA sequences; competition experiments in the presence of nonspecific DNA showed, however, that the affinity of both tumor antigen forms for the viral genome control region was at least 10-fold higher than their affinity for nonspecific DNA sequences. (c) The binding of the 5-6-S subclass to viral control region DNA was optimal at 60-80 mM NaCl while specific DNA binding of the 14-16-S form was optimal at 150-200 mM NaCl; however, binding of the 14-16-S form to nonspecific DNA sequences was also more resistant to high salt concentrations than that of the 5-6S form. (d) Both tumor antigen forms bound well to specific and to nonspecific DNA at pH 6-6.5; with increasing pH values, binding to nonspecific DNA decreased while binding to specific DNA reached an optimum at pH 7-7.5. Binding of the 14-16-S form to viral origin DNA was more resistant to pH values above 7.5 than binding of the 5-6-S form.  相似文献   

6.
We have analyzed the nature of RecA protein-RecA protein interactions using an affinity column prepared by coupling RecA protein to an agarose support. When radiolabeled soluble proteins from Escherichia coli are applied to this column, only the labeled RecA protein from the extract was selectively retained and bound tightly to the affinity column. Efficient binding of purified 35S-labeled RecA protein required Mg2+, and high salt did not interfere with the binding of RecA protein to the column. Complete removal of the bound enzyme from the affinity column required treatment with guanidine HCl (5 M) or urea (8 M). These and other properties suggest that hydrophobic interactions contribute significantly to RecA protein subunit recognition in solution. Using a series of truncated RecA proteins synthesized in vitro, we have obtained evidence that at least some of the sequences involved in protein recognition are localized within the first 90 amino-terminal residues of the protein. Based on the observation that RecA proteins from three heterologous bacteria are specifically retained on the E. coli RecA affinity column, it is likely that this binding domain is highly conserved and is required for interaction and association of RecA protein monomers. Stable ternary complexes of RecA protein and single-stranded DNA were formed in the presence of the nonhydrolyzable ATP analog adenosine 5'-O-(thiotriphosphate) and applied to the affinity columns. Most of the complexes formed with M13 DNA could be eluted in high salt, whereas a substantial fraction of those formed with the oligonucleotide (dT)25-30 remained bound in high salt and were quantitatively eluted with guanidine HCl (5 M). The different binding properties of these RecA protein-DNA complexes likely reflect differences in the availability of a hydrophobic surface on RecA protein when it is bound to long polynucleotides compared to short oligonucleotides.  相似文献   

7.
Solubilization and partial purification of GABAB receptor from bovine brain   总被引:1,自引:0,他引:1  
gamma-Aminobutyric acid (GABA)B receptor has been solubilized and partially purified by an affinity column chromatography. GABAB receptor was solubilized by 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) in the presence of asolectin. The solubilized GABAB receptor was adsorbed on baclofen-coupled epoxy-activated Sepharose 6B. The affinity matrix adsorbed 80% of the solubilized [3H]GABA binding activity to GABAB receptor, and approximately 75% of the adsorbed activity could be eluted with 1 M KC1. GABAB receptor binding in the fraction eluted from affinity column was displaced by GABA, baclofen and 2-hydroxy saclofen in a dose-dependent manner. Furthermore, the purified GABAB receptor showed approximately 2800-fold purification as compared with the original solubilized fraction and possessed the specific binding activity of 17.68 p mol/mg of protein. This binding consisted of a single binding site with a dissociation constant of 64.4 nM. The present results indicate that affinity column chromatographic procedures using baclofen-coupled epoxy-activated Sepharose 6B are suitable for the partial purification of GABAB receptor from cerebral tissues.  相似文献   

8.
The retinoblastoma (RB) gene encodes a nuclear phosphoprotein with a molecular weight of 110,000 (pp110RB) associated with DNA-binding activity. This sequence-nonspecific DNA binding activity was further studied by Southwestern and DNA-cellulose chromatography using purified fusion proteins expressed in Escherichia coli. Three fusion proteins, containing amino acids 612-775, 776-928, and 612-928 of pp110RB, bound to DNA; the binding affinity of the latter was approximately 20-fold higher than those of either smaller region. Other regions of pp110RB had no detectable binding activity, indicating that the carboxyl-terminal region of the RB protein is the major domain responsible for interacting with DNA. Since several potential phosphorylation sites reside within this region, isoforms of RB protein from cellular lysates with various degrees of phosphorylation were compared with respect to their DNA-binding affinity. The hyperphosphorylated form was eluted from DNA-cellulose columns at 0.1-0.3 M NaCl, whereas the hypophosphorylated form appeared in the eluates only at salt concentrations of 0.4-0.7 M, implying that phosphorylation of RB protein may affect its DNA-binding activity. That pp110RB can bind DNA intrinsically, and that this activity can be modulated by phosphorylation, is consistent with the proposed regulatory role of the RB protein in cell growth and differentiation.  相似文献   

9.
At least two subunits contributed to the formation in vitro of a specific complex binding to the AP1 consensus sequence (TGAGTCA) in the gibbon ape leukemia virus (GALV) enhancer in MLA144 cells. This complex can be dissociated on a monomeric GALV oligonucleotide affinity column. One protein, termed the core protein, was retained on the oligonucleotide affinity column. The second protein flowed through the oligonucleotide affinity column and, when alone, did not bind to DNA; however, when present with the core protein, it bound strongly and very specifically to the GALV sequence. MLA144 cells contained only trace amounts of c-fos and c-jun by immunoblot analysis, suggesting that the proteins specifically binding to the GALV AP1 site were distinct from c-fos and c-jun. In addition to the major complex that recognized the GALV element, MLA144 cells contained a minor complex that is chromatographically different from and antigenically related to c-fos. The factor in the flowthrough complemented a human T-cell nuclear extract (Jurkat cell line), which, when alone, had no assayable complex that specifically bound to the GALV enhancer; this complementation gave rise to a specific complex similar to that seen in MLA144 cells. Together, these results suggest that the GALV enhancer can interact with multicomponent protein complexes in a cell-line-specific manner.  相似文献   

10.
Using oligonucleotide affinity chromatography with DNase I footprinting as an assay we have looked for proteins that interact with sequence elements within the yeast origin of replication, autonomously replicating sequence 1 (ARS1). In this work we describe a protein that binds with high affinity to DNA but displays only moderate sequence specificity. It is eluted at 0.7 M salt from an ARS1 oligonucleotide column. Footprinting analysis on ARS1 at a high protein concentration revealed at least three sites of protection flanking element A and its repeats. Element A itself is rendered hypersensitive to DNase I digestion upon protein binding. This pattern is also observed for the H4 and HMR-E ARSs, suggesting that the protein alters the DNA conformation at element A and its repeats. The affinity-purified fraction is also capable of supercoiling a relaxed, covalently closed plasmid in the presence of topoisomerase. Highly purified preparations of the protein are enriched in an 18-kDa polypeptide which can be renatured from a denaturing gel and shown to bind ARS1 DNA. We have designated this protein DBF-A, DNA-binding factor A.  相似文献   

11.
Cyclic adenosine 3',5'-monophosphate (cAMP) dependent protein kinase and proteins specifically binding cAMP have been extracted from calf thymus nuclei and analyzed for their abilities to bind to DNA. Approximately 70% of the cAMP-binding activity in the nucleus can be ascribed to a nuclear acidic protein with physical and biochemical characteristics of the regulatory (R) subunit of cAMP-dependent protein kinase. Several peaks of protein kinase activity and of cAMP-binding activity are resolved by affinity chromatography of nuclear acidic proteins on calf thymus DNA covalently linked to aminoethyl Sephrarose 4B. When an extensively purified protein kinase is subjected to chromatography on the DNA column in the presence of 10(-7) M cAMP, the R subunit of the kinase is eluted from the column at 0.05 M NaCl while the catalytic (C) subunit of the enzyme is eluted at 0.1-0.2 M NaCl. When chromatographed in the presence of histones, the R subunit is retained on the column and is eluted at 0.6-0.9 M NaCl. In the presence of cAMP, association of the C subunit with DNA is enhanced, as determined by sucrose density gradient centrifugation of DNA-protein kinase complexes. cAMP increases the capacity of the calf thymus cAMP-dependent protein kinase preparation to bind labeled calf thymus DNA, as determined by a technique employing filter retention of DNA-protein complexes. This protein kinase preparation binds calf thymus DNA in preference to salmon DNA, Escherichia coli DNA, or yeast RNA. Binding of protein kinases to DNA may be part of a mechanism for localizing cyclic nucleotide stimulated protein phosphorylation at specific sites in the chromatin.  相似文献   

12.
13.
A crude preparation of alkaline phosphatase (EC 3.1.3.1) from calf intestinal mucosa was purified by affinity chromatography on Sepharose-bound derivatives of arsanilic acid, which was found to be a competitive inhibitor of the enzyme. Three biospecific adsorbents were prepared for the chromatography, and the best results were obtained with a tyraminyl-Sepharose derivative coupled with the diazonium salt derived from 4-(p-aminophenylazo)phenylarsonic acid. Alkaline phosphatase was the only enzyme retained by the affinity column in the absence of Pi. The enzyme eluted by phosphate buffer had a specific activity of about 1200 units per mg of protein at pH 10.0, with 5.5mM-p-nitrophenyl phosphate as the substrate.  相似文献   

14.
Multiple aflatoxin B1 binding proteins exist in rat liver cytosol   总被引:1,自引:0,他引:1  
The in vitro binding of aflatoxin B1 to rat liver cytosolic proteins was investigated. Aflatoxin B1 binding activity was assayed with protein purified by gel permeation chromatography, ammonium sulfate fractionation, and DEAE-cellulose chromatography. Twenty-five percent of the total binding activity was associated with proteins eluted by 0 and 0.1 M NaCl. Over 50% of the total binding activity was associated with protein present in the 0.2 M NaCl fraction. Glutathione S-transferase activity was also monitored and found only in the low salt (less than 0.2 M NaCl) fractions. The proteins eluted by 0.2 M NaCl were further purified by hydroxylapatite column chromatography and binding was found predominantly in a single fraction. The protein purification steps resulted in a 20-fold increase in the specific binding activity over that initially observed in the cytosol. These results indicate that multiple proteins are capable of binding aflatoxin B1 in rat liver cytosol.  相似文献   

15.
An enhancer-binding protein of the fibroin gene, fibroin factor 1 (FF1), has been purified to homogeneity from crude nuclear extracts of posterior silk gland cells where this gene is transcribed specifically. There is a multiplicity of FF1; the FF1 activity was eluted as at least three major fractions on column chromatographies. FF1 is able to form a stable complex with the enhancer DNA sequence in the presence of another proteinous factor named FF2, which lacks ability to bind DNA molecules by itself. One of FF1 forms, FF1a, was purified with a combination of classical purification techniques without using a sequence-specific affinity column, and identified as a protein with molecular mass 125 kDa using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. To obtain homogeneous protein of FF1a, purification of more than 26,000-fold from the starting nuclear extract was necessary.  相似文献   

16.
17.
18.
Holm J  Hansen SI 《Bioscience reports》2002,22(3-4):431-441
Folate binding protein was purified from cow's milk by a combination of cation exchange chromatography and methotrexate-AH-sepharose affinity chromatography. Dilution of the preparation to concentrations of protein less than 10 nM resulted in drastic changes of radioligand (folate) binding characteristics, i.e., a decrease in binding affinity with a change from upward to downward convex Scatchard plots and increased ligand dissociation combined with appearance of weak-affinity aggregated forms of the binding protein on gel filtration. These findings, consistent with a model predicting dimerization between unliganded and liganded monomers, were reversed in the presence of material eluted from the affinity column after adsorption of the protein(cofactor) or cholesterol, phospholipids, and synthetic detergents. The latter amphiphatic substances form micelles and lipid bilayers which could separate hydrophobic unliganded monomers from hydrophilic liganded monomers in the surrounding aqueous medium and thereby prevent association between these monomeric forms prevailing at low concentrations of the protein. Our data have some bearings on studies which show that cholesterol and phospholipids are necessary for the clustering of folate receptors in the cell membrane; a process required for optimum receptor function and internalization of folate.  相似文献   

19.
This paper describes a protocol for the preparation of highly purified A (A1 and A2) and B chains of the plant toxin, ricin, and biochemical and biological characterization of these proteins. Intact ricin was bound to acid-treated Sepharose 4B and was split on the column into A and B chains with 2-mercaptoethanol. The A chains were eluted with borate buffer containing 2-mercaptoethanol. A1 and A2 were then partially separated by cation exchange chromatography and the contaminating B chain was removed by affinity chromatography on Sepharose-asialofetuin and Sepharose-monoclonal anti-B chain. The B chain was eluted from the Sepharose 4B column by treatment with galactose and was further purified by cation and anion exchange chromatography; contaminating A chains were removed by affinity chromatography on Sepharose-monoclonal anti-A chain. The purified A and B chains were active as determined by their ability to inhibit protein synthesis in a cell-free assay and their binding to asialofetuin, respectively. Furthermore, by polyacrylamide gel electrophoresis, toxicity in mice, and toxicity on several different cell types, both A and B chains were shown to be minimally cross-contaminated. Finally, it was shown that ammonium chloride significantly enhanced the nonspecific toxicity of B chains for cells in vitro. In contrast, ammonium chloride did not enhance either the nonspecific toxicity of A chains in vitro or the specific toxicity of A chain-containing immunotoxins prepared with the highly purified A1, A2 chains.  相似文献   

20.
We have previously reported that purified thyroid lysosomes bind to reconstituted microtubules to form stable complexes (Mithieux, G., Audebet, C., and Rousset, B. (1988) Biochim. Biophys. Acta 969, 121-130), a process which is inhibited by ATP (Mithieux, G., and Rousset, B. (1988) Biochim. Biophys. Acta 971, 29-37). Among detergent-solubilized lysosomal membrane protein, we identified a 50-kDa molecular component which binds to preassembled microtubules. The binding of this polypeptide to microtubules was decreased in the presence of ATP. We purified this 50-kDa protein by affinity chromatography on immobilized ATP. The 50-kDa protein bound to the ATP column was eluted by 1 mM ATP. The purified protein, labeled with 125I, exhibited the ability of interacting with microtubules. The binding process was inhibited by increasing concentrations of ATP, the half-maximal inhibitory effect being obtained at an ATP concentration of 0.35 mM. The interaction of the 50-kDa protein with microtubules is a saturable phenomenon since the binding of the 125I-labeled 50-kDa protein was inhibited by unlabeled solubilized lysosomal membrane protein containing the 50-kDa polypeptide but not by the same protein fraction from which the 50-kDa polypeptide had been removed by the ATP affinity chromatography procedure. The 50-kDa protein has the property to bind to pure tubulin coupled to an insoluble matrix. The 50-kDa protein was eluted from the tubulin affinity column by ATP. These findings support the conclusion that a protein inserted into the lysosomal membrane is able to bind directly to microtubules in a process which can be regulated by ATP. We propose that this protein could account for the association of lysosomes to microtubules demonstrated both in vitro and in intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号