首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Abstract. 1. Individuals of long-winged waterstrider (Gerridae) species were found in spring far from their breeding habitats, which indicates that they fly before reproduction.
2. Field samples and laboratory studies show that once they return to their breeding sites, many individuals of three waterstrider species ( Gerris odontogaster (Zett.), Gerris lacustris (L.) and Limnoporus rufoscutellatus (Lat.)) histolyse wing muscles and lose flight ability during their reproductive period.
3. The extent of flight-muscle histolysis varies with environmental factors. Food scarcity affects flight-muscle histolysis in G.odontogaster females. In G.Lacustris , flight-muscle histolysis was more common in the laboratory than in the field samples. Proportionately more females than males lost their flight ability by the end of the reproductive period.
4. Flight ability had direct costs in reproductive potential with (non-flyer) females, which histolysed their flight muscles, laying more eggs than (flyer) females, which maintained flight ability. This was also the case during food scarcity. Non-flyer males of G.odontogaster survived longer than flyer males.
5. Spring migration was distinguished from dispersal during the reproductive period, because these flights serve different functions. Flight-muscle histolysis of females during reproduction is a qualitative reproductive option, with a trade-off between dispersal ability and reproductive potential. Ability to change reproductive behaviour depending on environmental conditions increases an individual's ability to cope with a large variety of habitats.  相似文献   

2.
1. Trade‐offs play a fundamental role in the evolution of many traits. 2. In wing‐polymorphic field crickets, the long‐winged morph can disperse from unfavourable environments, but has lower reproductive success than the short‐winged morph, because of costs associated with flight capability. 3. However, long‐winged individuals may minimise costs in favourable environments by histolysing their flight muscles and becoming flightless. 4. Few studies have examined how flight‐muscle histolysis affects male signalling and mate attraction. 5. We examined differences in singing activity and song characteristics among the flightless (short‐winged and histolysed long‐winged) and the flight‐capable male morphs, and female preferences for male song, in the sand field cricket. 6. We found: (i) both flightless morphs sang more than the flight‐capable morph, (ii) song characteristics varied among the three morphs, and (iii) females preferred songs characteristic of the long‐winged morphs. 7. Histolysis should increase mating success of long‐winged males because it increases singing activity. 8. Histolysed long‐winged males may have higher mating success than short‐winged males as they sing as frequently but produce more attractive songs. 9. Therefore, plasticity within the long‐winged morph may reduce costs of maturing in environments from which dispersal is not advantageous; non‐flying morphs may be pursuing different reproductive tactics.  相似文献   

3.
ABSTRACT. 1. This paper tests the hypothesis that selection for dispersal ability within a species influences not only the occurrence and extent of wing reduction but also the tendency or ability of the macropterous individuals to fly.
2. Flight thresholds of four species of waterstriders (Hemiptera; Gerridae) were assessed using a tethered flight technique. The species tested varied from monomorphic macropterous ( Limnoporus dissortis Drake and Harris), through seasonally polymorphic ( Gerris comatus Drake and Hottes and G. buenoi Kirkaldy), to primarily apterous ( G.remigis Say).
3. Condition of the indirect, mesothoracic flight muscles, and presence or absence of mature or developing eggs (for females) were determined by dissection of all individuals immediately following flight testing. Only individuals with normal muscles were included in the analysis of flight thresholds.
4. Comparisons among species revealed that average flight threshold and extent of flight muscle histolysis were negatively associated with the proportion of macropterous individuals. Wing reduction was also associated with significant seasonal variation in flight threshold, particularly among females.
5. These results support our initial hypothesis, and further indicate that, within the Gerridae, dispersal tendency depends not only on the proportion of macropters but also on the dispersal capability of the macropterous individuals.  相似文献   

4.
ABSTRACT.
  • 1 Horvathiolus gibbicollis (Costa), a ground-living seed-feeding bug of the mediterranean region, has two wing morphs. In macrop-terous bugs both pairs of wings are fully developed. In brachypterous ones forewings are reduced to about two-thirds and hindwings to less than a third of their length in macropters.
  • 2 Each morph bred true with regard to wing length when reared under variable density, food and temperature conditions for several generations.
  • 3 All F1 offspring between crosses of the two morphs were brachypterous. In F2 approximately 25% were macropters and 75% brachypters implying monogenic control of wingform.
  • 4 Flight muscles in macropters vary from fully developed to totally reduced. This variation is determined by environmental conditions during adult life. Most young adult bugs have flight muscles, and totally starved or unmated bugs retain their flight muscles. Fed and mated females histolyse flight muscles as they start laying eggs, while most males of the same group retain their muscles.
  • 5 Brachypterous bugs have a smaller thorax and larger abdomen than macropterous ones.
  • 6 Brachypterous bugs reach adulthood slightly before macropterous ones, and they have a distinctly shorter adult preoviposition period.
  • 7 Lifetime egg production does not differ significantly between the two wing morphs. However, the temporal pattern of egg laying is different in the two morphs. The mx-curve of macropters starts later, then attains a higher peak and finally decreases faster than that of brachypters.
  • 8 Initially, macropters lay smaller eggs than brachypters, but egg volume increases with age in macropters and eventually approaches that of brachypters.
  • 9 The initial increase in reproductive effort (egg volumexegg number) of macropters is concomitant with wing muscle histolysis and the mobilization of thorax space for reproduction.
  • 10 Adult survival rate does not differ between the morphs.
  相似文献   

5.
The flightless bug Pyrrhocoris apterus (L.) is polymorphic for both wing length and flight muscle development. The developed flight muscles of macropterous adults of both sexes first enlarge their volume during the first 5 days after adult emergence, but are then histolyzed in all males and females older than 10 and 14 days, respectively. The flight muscles of brachypterous adult males and females are underdeveloped due to their arrested growth. The total protein content of histolyzed dorsolongitudinal flight muscles from 21-day-old macropterous adults of both sexes is lower than that of developed dorsolongitudinal flight muscles in 5-10-days-old macropterous bugs, but substantially higher than the protein content of underdeveloped dorsolongitudinal flight muscles from adult brachypters. Histolyzed dorsolongitudinal flight muscles differ from the developed ones by decreased quantities of 18 electrophoretically separated proteins. Histolysis of developed dorsolongitudinal flight muscles is accompanied by significant decreases in citrate synthase, glyceraldehyde-3-phosphate dehydrogenase and β-hydroxyacyl-CoA dehydrogenase enzyme activities and an increase in alanine aminotransferase activity, and can be precociously induced by application of a juvenile hormone analogue. This is the first report of flight muscle polymorphism, histolysis of developed flight muscles and its endocrine control in insects displaying non-functional wing polymorphism.  相似文献   

6.
Summary Ubiquitin was localized by immunofluorescence microscopy during post-mating histolysis of fibrillar flight muscle in female fire ants, Solenopsis spp. Normal muscles, as well as histolysing muscles from artificially inseminated and haemolymph-injected females contained ubiquitin in association with nuclei, Z-lines, myofilaments and mitochondria. However, the density of the ubiquitin immunoreaction was markedly increased in the nuclei, Z-lines and mitochondria of degenerating tissues 6, 12 and 24 h post treatment. At these times the heaviest immunoreactivity for ubiquitin was seen in association with the nuclei, Z-lines and mitochondria. Immuno-controls, incubated in the absence of the primary antibody, showed no similar immunostaining. When insemination was preceded by the injection of actinomycin D, muscle degradation was significantly depressed after a 24-h period. Also, ubiquitin immunofluorescence was markedly reduced in tissues pre-treated with actinomycin D. These observations suggest that insemination increases the ubiquitination of specific myofibrillar proteins destined for degradation.  相似文献   

7.
ABSTRACT. Removal of hindwings from long-winged females of the striped ground cricket, Allonemobius fasciatus , DeGeer (Gryllidae), induces flight muscle histolysis and oocyte development. Such females develop oocytes as rapidly as do short-winged forms, while intact long-winged females retain their flight muscles and develop few oocytes.
Flight muscle histolysis occurs in starved long-winged females when they are de-alated. However, such females fail to mature oocytes. Implantation of corpora allata (CA) into long-winged females results in flight muscle histolysis as well as oocyte maturation even if their hindwings remain intact, indicating that flight muscle histolysis can take place without de-alation. It is likely that the CA are responsible for both flight muscle histolysis and oocyte development, and that CA activity is enhanced by de-alation.  相似文献   

8.
Age-dependent changes in flight performance, biochemical composition of flight muscles, and fresh mass of the flight muscles and ovaries were analysed in adult female two-spotted crickets, Gryllus bimaculatus. After the final moult the flight muscle mass increased significantly to a maximum at days 2 and 3. On day 2 the highest flight activity was also observed. Between days 2 and 3 the ovary weight started to rapidly increase due to vitellogenic egg growth, which continued at a high rate until day 10. With the onset of ovarial growth, flight performance decreased and the flight muscles started to histolyse. A high correlation between flight muscle mass and the content of protein, lipid, glycogen, and free carbohydrate in the flight muscle indicated that energy-rich substrates from the degrading flight muscles were used to fuel oogenesis, although flight muscle histolysis can provide only a small fraction of the substrates needed for egg production. In general, there was a clear trade-off between egg production and flight ability. Surprisingly, however, some females possessed well-developed ovaries but displayed no signs of flight muscle histolysis. This observation was corroborated by flight experiments which revealed that, although most flying females had small ovaries, some of them carried an appreciable amount of mature eggs, and thus, somehow managed to evade the oogenesis-flight syndrome.  相似文献   

9.
Morphology, flight muscles, and reproductive development were compared between long‐winged (LW) and short‐winged (SW) morphs of the cricket Velarifictorus ornatus (Shiraki) (Orthoptera: Gryllidae). There was no difference in body weight and pre‐oviposition between the two morphs, but LW individuals had better‐developed flight muscles than SW individuals during and after emergence of the adult. The flight muscles at adult emergence represented 11.9% of the total body weight in the LW female and 4.9% in the SW female. In addition, the weight of the flight muscle of LW females increased by 50% during the first 5 days, whereas the flight muscle of the SW variant increased only slightly after adult emergence. The process of oviposition in LW, SW, and de‐alated females varied: SW females produced more eggs at the early stage than LW females, but de‐alation could shorten the time until the peak of egg laying and caused histolysis of flight muscles of LW females. There was no significant difference in total egg production between the above three groups. In the male, unlike the female, the accessory glands of the two wing morphs enlarged continuously at the same rate. There was no difference between the two wing morphs in the mass of the testes during the first 7 days after adult emergence.  相似文献   

10.
曾杨  朱道弘  赵吕权 《昆虫学报》2012,55(2):241-246
为探讨长颚斗蟋Velarifictorus asperses (Walker)翅型分化的生态学意义, 对室内饲养获得的长翅和短翅型雌成虫飞行肌和卵巢的发育, 以及长、 短翅型雌成虫的生殖力和寿命进行了比较研究。结果表明: 羽化当日, 长翅型雌成虫飞行肌重38.68±9.15 mg, 显著高于短翅型的17.53±4.44 mg (P<0.05); 而二者卵巢重量无显著差异(P>0.05), 分别为4.69±1.04 mg和4.88±0.97 mg。羽化后8 d内, 长翅型雌成虫飞行肌重量增加了48.9%, 短翅型雌成虫飞行肌重量无明显增加; 而短翅型雌成虫卵巢的重量增加至93.5±11.7 mg, 约为长翅型雌成虫的4.5倍。短翅型雌成虫的产卵前期显著短于长翅型, 其早期产卵量及总产卵量亦显著高于长翅型; 而两翅型雌成虫中后期产卵量及寿命无显著差异(P>0.05)。此外, 长翅型雌成虫在羽化后12 d开始发生飞行肌的降解, 飞行肌降解个体的卵巢重量显著高于未降解个体, 与短翅型相似。结果提示, 飞行肌与生殖系统的发育之间存在资源分配的权衡关系(trade-off), 且这种资源分配的差异可能会导致长翅型与短翅型个体在生活史策略上出现分化, 即长翅型个体具有飞行能力, 而短翅型个体则在生殖方面获得更高的收益, 且飞行肌的降解可能是长翅型个体由飞行转向生殖发育的生理信号。  相似文献   

11.
  • 1 The development of reproductive and flight capacity of pine weevils Hylobius abietis during the spring and their dispersal to, and subsequent development at, new clearfell oviposition sites comprise key phases in their life cycle in managed forests. At an old clearfell site where autumn‐emerging weevils had overwintered, weevils were trapped as they re‐emerged in the spring and tested for their ability to fly and then dissected to determine the degree of wing muscle and egg development.
  • 2 Re‐emerging weevils were most abundant in pine growing at the edge of the clearfell and, over most of the trapping period (April to June), their capacity for flight (proportion flying and wing muscle width) was more advanced than in weevils from the clearfell itself, with a similar trend in the degree of reproductive development (proportion with mature eggs and egg volume).
  • 3 In weevils from the clearfell, flight capacity and reproductive development increased concurrently to a peak around mid‐May. In weevils from pine, wing muscles were already well developed at the start of trapping, although few of them flew. Their more advanced development was attributed to the increased opportunities for maturation feeding after emergence in the previous autumn.
  • 4 In the spring, weevils reached the canopy of trees for maturation feeding by walking and, to a lesser extent, by flight. Weevils dispersed by flight to oviposition sites in mid‐May when most of them were reproductively mature. After arrival, flight ability and wing muscle size declined rapidly but egg production was maintained until most weevils had stopped flying. When wing muscles reached their minimum size, there was a marked decline in egg size, suggesting that wing muscle breakdown is important in maintaining egg production at oviposition sites. Prospects for further wing muscle and reproductive development are discussed.
  相似文献   

12.
Differences in the growth of dorsolongitudinal flight muscles and gonads in 1–28 days old long-winged (macropterous) and short-winged (brachypterous) adults of the firebug (Pyrrhocoris apterus L.) and the resource allocation to these organs were studied by means of total protein analysis. We found predominant allocation of food resources to flight muscles compared to reproductive organs in both macropterous males and females during the first 5 days of adult life. Subsequent histolysis of developed flight muscles coincided with increased total protein content in some reproductive organs. Initiation of intensive food intake after starvation or application of higher dose of methoprene on macropterous adults changed the resource allocation in favour of growth of reproductive organs and induced precocious histolysis of flight muscles. It indicates an involvement of juvenile hormone in wing morph-related differential allocation of resources in the bug. Increased total protein contents in the ovaries and accessory glands of starved macropterous females and males treated with methoprene, respectively, indicate that proteins derived from the methoprene-induced histolysis of the flight muscles are re-utilized for the growth of the reproductive organs. It is the first report of persistence of differential resource allocation to flight muscles and reproductive organs in the wing-polymorphic insects with non-functional macropterism.  相似文献   

13.
The effects of deprivation of oviposition substrate on food consumption and egg production were compared between the long-winged (LW) and the short-winged (SW) morph of a cricket, Modicogryllus confirmatus, to determine how suppressed oviposition activity would influence these traits in each wing morph. Food consumption was greatly suppressed in females deprived of oviposition substrate (-OS) compared to those given access to it (+OS) during the 2-week feeding trial in the SW morph but not in the LW morph. Some LW females shed their hindwings and histolyzed the flight muscles. Such de-alated LW (DLW) morphs tended to consume more food than intact LW (ILW) morphs. In all morphs, ovarian weight was heavier under -OS conditions than under +OS conditions during the second week of adulthood, although the differences were greater in SW morphs than in ILW morphs. In DLW morphs in which flight muscle histolysis was induced by artificial de-alation at adult emergence, the temporal changes in ovarian weight were similar to those of SW morphs.In SW morphs, food consumption was also significantly reduced when ovipositing females were deprived of oviposition substrate for 2 days compared to those allowed to oviposit continuously, but food consumption was not reduced in ILW or DLW morphs. SW females from which one ovary was extirpated at adult emergence, SW (-o), also showed a significant difference in food consumption when treated as above, indicating that food consumption was not determined simply by the number of ovarian eggs. The crop content was positively correlated to food consumption and smaller under -OS conditions than under +OS conditions. The 2-day deprivation of oviposition substrate caused no significant difference in the total number of deposited and ovarian eggs in any group, but the ovarian mass of developing oocytes tended to be smaller under -OS than under +OS conditions, particularly in SW morphs.These results indicate the possibility that some inconsistent results and conclusions discussed in recent studies, concerning the physiological trade-offs between flight capability and reproduction, were caused by the suppressed oviposition activity and failure to recognize the occurrence of flight muscle growth and histolysis in the test crickets.  相似文献   

14.
A central question in the study of the evolution of dispersal is what kind of dispersal strategies are evolutionarily stable. Hastings (Theor Pop Biol 24:244-251, 1983) showed that among unconditional dispersal strategies in a spatially heterogeneous but temporally constant environment, the dispersal strategy with no movement is convergent stable. McPeek and Holt's (Am Nat 140:1010-1027, 1992) work suggested that among conditional dispersal strategies in a spatially heterogeneous but temporally constant environment, an ideal free dispersal strategy, which results in the ideal free distribution for a single species at equilibrium, is evolutionarily stable. We use continuous-time and discrete-space models to determine when the dispersal strategy with no movement is evolutionarily stable and when an ideal free dispersal strategy is evolutionarily stable, both in a spatially heterogeneous but temporally constant environment.  相似文献   

15.
  • 1 Adult pine weevils Hylobius abietis emerge from conifer root‐stumps, on which larvae develop, over an extended period during summer and autumn. Newly‐emerged weevils were tested for their ability to fly and assessed for wing muscle and reproductive development. In addition, the effect of summer–autumn maturation feeding on reproductive development was assessed in field bioassays.
  • 2 There was considerable variation in development between newly‐emerged weevils that was related to the timing of emergence. The first weevils, emerging in early July, weighed less than later‐emerging ones, had undeveloped flight muscles and did not fly. Over the emergence period, wing muscle size and flight ability increased markedly, with 50–60% flying by mid‐September. Differences between emerging adults are likely to have been affected by temporal changes in the quality of the bark on which the larvae feed.
  • 3 Reproductive development lagged behind that of wing muscles but, in early August, there was a rapid increase in the proportion of weevils with immature eggs and a corresponding increase in oocyte size. However, although wing muscles were fully formed in later‐emerging weevils, immature eggs were only approximately 10% of the volume of mature eggs.
  • 4 In field bioassays of summer–autumn maturation feeding, eggs continued to develop and some weevils laid mature eggs. Feeding and development during the pre‐overwinter period is likely to influence winter survival and also dispersal and reproduction in the following spring.
  • 5 The potential effects of climate change on the weevil life cycle are briefly discussed. Weevils are likely to benefit from the higher temperatures and later autumns predicted under climate change, resulting in an increase in damage to transplants.
  相似文献   

16.
Insects display much variation in life histories mediated by juvenile hormone. We focus on the contribution of JH to variations in migratory life histories. In many migrants such as the large milkweed bug and the monarch butterfly, JH directly influences migratory flight and the relation between flight and reproduction (oogenesis-flight syndrome). In the true armyworm, JH regulates interactions among female calling, pheromone production, ovarian development, and migration with varying blends of structurally related forms of JH and JH acid. A role for JH also occurs in wing polymorphisms. Aphids regulate wing production via JH-mediated maternal effects; and in crickets, JH esterase modulates the JH influence on wing form. In addition, JH is implicated in wing muscle histolysis. The comprehensive Fairbairn model for JH regulation of wing polymorphisms in flight behavior predicts that JH action will depend on the mode of genetic control, whether single locus or polygenic. Our own studies of the soapberry bug, Jadera haematoloma, reveal a four-morph wing polymorphism in a species rapidly evolving on a new host plant. There are long- and short-winged forms, and the long-winged form displays three degrees of flight muscle histolysis. The polymorphism is subject to both genetic and environmental variations that are mediated by JH. Application of methoprene increases the frequency of the short-winged forms, but there is both within- and between-population genetic variation and genotype by environment interaction (plasticity) in the response to JH. Arch. Insect Biochem. Physiol. 35:359–373, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Degeneration of indirect flight muscles takes place during the first gonotrophic cycle in females. Feeding and mating stimulate egg production and muscle histolysis. Starved virgin females do not histolyse the flight muscles. Mating has greater effect on muscle degeneration than feeding. Ovariectomy inhibits degeneration to a certain extent.  相似文献   

18.
The wing-polymorphic cricket, Gryllus firmus, contains (1) a flight-capable morph (LW(f)) with long wings and functional flight muscles, (2) a flightless morph with reduced wings and underdeveloped flight muscles (SW), and (3) a flightless morph with histolyzed flight muscles but with fully developed wings (LW(h)). The LW(f) morph differed genetically from the SW morph and phenotypically from the LW(h) morph in the size of flight muscles, ovarian growth during the first week of adulthood, and the hemolymph titer of juvenile hormone (JH). This is the first study to document that phenotypes that differ genetically in morphological aspects of dispersal capability and in ovarian growth also differ genetically in the titer of a hormone that potentially regulates those traits. The JH titer rose 9-100-fold during the photophase in the flight-capable LW(f) morph but did not change significantly during this time in either flightless morph. Prolonged elevation of the in vivo JH titer in flight-capable females, by topical application of a hormone analogue, caused a substantial increase in ovarian growth and histolysis of flight muscles. The short-term, diurnal rise in the JH titer in the dispersing morph may be a mechanism that allows JH to positively regulate nocturnal flight behavior, while not causing maladaptive histolysis of flight muscles and ovarian growth. This is the first demonstration of naturally occurring, genetically based variation for diurnal change in a hormone titer in any organism.  相似文献   

19.
Pattern formation in muscle development is often mediated by special cells called muscle organizers. During metamorphosis in Drosophila, a set of larval muscles function as organizers and provide scaffolding for the development of the dorsal longitudinal flight muscles. These organizers undergo defined morphological changes and dramatically split into templates as adult fibers differentiate during pupation. We have investigated the cellular mechanisms involved in the use of larval fibers as templates. Using molecular markers that label myoblasts and the larval muscles themselves, we show that splitting of the larval muscles is concomitant with invasion by imaginal myoblasts and the onset of differentiation. We show that the Erect wing protein, an early marker of muscle differentiation, is not only expressed in myoblasts just before and after fusion, but also in remnant larval nuclei during muscle differentiation. We also show that interaction between imaginal myoblasts and larval muscles is necessary for transformation of the larval fibers. In the absence of imaginal myoblasts, the earliest steps in metamorphosis, such as the escape of larval muscles from histolysis and changes in their innervation, are normal. However, subsequent events, such as the splitting of these muscles, fail to progress. Finally, we show that in a mutant combination, null for Erect wing function in the mesoderm, the splitting of the larval muscles is aborted. These studies provide a genetic and molecular handle for the understanding of mechanisms underlying the use of muscle organizers in muscle patterning. Since the use of such organizers is a common theme in myogenesis in several organisms, it is likely that many of the processes that we describe are conserved.  相似文献   

20.
We have characterized the process of flight muscle histolysis in the female house cricket, Acheta domesticus, through analysis of alterations of tissue wet weight, total protein content, and percent shortening of the dorsal longitudinal flight muscles (DLMs). Our objectives were to (1) define the normal course of histolysis in the cricket, (2) analyze the effects of juvenile hormone (JH) removal and replacement, (3) determine the effects of cycloheximide treatment, and (4) examine patterns of protein expression during histolysis. Our results suggest that flight muscle histolysis in the house cricket is an example of an active, developmentally regulated cell death program induced by an endocrine signal. Initial declines of total protein in DLMs indicated the JH signal that induced histolysis occurred by Day 2 and that histolysis was essentially complete by Day 3. Significant reductions in tissue weight and percent muscle shortening were observed in DLMs from Day 3 crickets. Cervical ligation of Day 1 crickets prevented histolysis but this inhibition could be reversed by continual topical treatments with methoprene (an active JH analog) although ligation of Day 2 crickets did not prevent histolysis. A requirement for active protein expression was demonstrated by analysis of synthesis block by cycloheximide and short-term incorporation of (35)S-methionine. Treatment with cycloheximide prevented histolysis. Autofluorographic imaging of DLM proteins separated by electrophoresis revealed apparent coordinated regulation of protein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号