首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The highly reactive nature of dopamine renders dopaminergic neurons vulnerable to oxidative damage. We recently demonstrated that loss-of-function mutations in the Drosophila gene Catecholamines up (Catsup) elevate dopamine pools but, paradoxically, also confer resistance to paraquat, an herbicide that induces oxidative stress-mediated toxicity in dopaminergic neurons. We now report a novel association of the membrane protein, Catsup, with GTP cyclohydrolase rate-limiting enzyme for tetrahydrobiopterin (BH(4)) biosynthesis and tyrosine hydroxylase, rate-limiting enzyme for dopamine biosynthesis, which requires BH(4) as a cofactor. Loss-of-function Catsup mutations cause dominant hyperactivation of both enzymes. Elevated dopamine levels in Catsup mutants coincide with several distinct characteristics, including hypermobility, minimal basal levels of 3,4-dihydroxy-phenylacetic acid, an oxidative metabolite of dopamine, and resistance to the vesicular monoamine transporter inhibitor, reserpine, suggesting that excess dopamine is synaptically active and that Catsup functions in the regulation of synaptic vesicle loading and release of dopamine. We conclude that Catsup regulates and links the dopamine synthesis and transport networks.  相似文献   

2.
Molecular genetics of dopa-responsive dystonia   总被引:4,自引:0,他引:4  
The causative genes of two types of hereditary dopa-responsive dystonia (DRD) due to dopamine (DA) deficiency in the nigrostriatum DA neurons have been elucidated. Autosomal dominant DRD (AD-DRD) was originally described by Segawa as hereditary progressive dystonia with marked diurnal fluctuation (HPD). We cloned the human GTP cyclohydrolase I (GCH1) gene, and mapped the gene to chromosome 14q22.1-q22.2 within the HPD/DRD locus, which had been identified by linkage analysis. GCH1 isthe rate-limiting enzyme for the biosynthesis of tetrahydrobiopterin (BH4), the cofactor for tyrosine hydroxylase (TH), which is the first and rate-limiting enzyme of DA synthesis. We proved that the GCH1 gene is the causative gene for HPD/DRD based on the identification of mutations of the gene in the patients and decreases in the enzyme activity expressed in mononuclear blood cells to 2-20% of the normal value. About 60 different mutations (missense, nonsense, and frameshift mutations) in the coding region or in the exon-intron junctions of the GCH1 gene have been reported in patients with AD-DRD all over the world. Recent findings indicate that the decreased GCH1 activity in AD-DRD may be caused by the negative interaction of the mutated subunit with the wild-type one, i.e., a dominant negative effect, and/or by decreases in the levels of GCH1 mRNA and protein caused by inactivation of one allele of the GCH1 gene. Autosomal recessive DRD (AR-DRD) with Segawa's syndrome was discovered in Germany. The AR-DRD locus was mapped to chromosome 11p15.5 in the chromosomal site of the TH gene. In the AR-DRD with Segawa's syndrome, a point mutation in TH (Gln381Lys) resulted in a pronounced decrease in TH activity to about 15% of that of the wild type. Several missense mutations in the TH gene have been found in AR-DRD in Europe. The phenotype of AR-DRD with the Leu205Pro mutation in the TH gene, which produces a severe decrease in TH activity to 1.5% of that of the wild type, was severe, not dystonia/Segawa's syndrome, but early-onset parkinsonism. However, a marked improvement of all clinical symptoms with a low dose of L-dopa was reported in AR-DRD/parkinsonism patients. These findings on DRD indicate that the nigrostriatal DA neurons may be most susceptible to the decreases in GCH1 activity, BH4 level, TH activity, and DA level, and that DRD is the DA deficiency without neuronal death in contrast to juvenile parkinsonism or Parkinson's disease with DA cell death.  相似文献   

3.
Quantitative traits are shaped by networks of pleiotropic genes . To understand the mechanisms that maintain genetic variation for quantitative traits in natural populations and to predict responses to artificial and natural selection, we must evaluate pleiotropic effects of underlying quantitative trait genes and define functional allelic variation at the level of quantitative trait nucleotides (QTNs). Catecholamines up (Catsup), which encodes a negative regulator of tyrosine hydroxylase , the rate-limiting step in the synthesis of the neurotransmitter dopamine, is a pleiotropic quantitative trait gene in Drosophila melanogaster. We used association mapping to determine whether the same or different QTNs at Catsup are associated with naturally occurring variation in multiple quantitative traits. We sequenced 169 Catsup alleles from a single population and detected 33 polymorphisms with little linkage disequilibrium (LD). Different molecular polymorphisms in Catsup are independently associated with variation in longevity, locomotor behavior, and sensory bristle number. Most of these polymorphisms are potentially functional variants in protein coding regions, have large effects, and are not common. Thus, Catsup is a pleiotropic quantitative trait gene, but individual QTNs do not have pleiotropic effects. Molecular population genetic analyses of Catsup sequences are consistent with balancing selection maintaining multiple functional polymorphisms.  相似文献   

4.
5.
6.
7.
Tyrosine hydroxylase (TH), the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter dopamine, is inactivated by peroxynitrite. The sites of peroxynitrite-induced tyrosine nitration in TH have been identified by matrix-assisted laser desorption time-of-flight mass spectrometry and tyrosine-scanning mutagenesis. V8 proteolytic fragments of nitrated TH were analyzed by matrix-assisted laser desorption time-of-flight mass spectrometry. A peptide of 3135.4 daltons, corresponding to residues V410-E436 of TH, showed peroxynitrite-induced mass shifts of +45, +90, and +135 daltons, reflecting nitration of one, two, or three tyrosines, respectively. These modifications were not evident in untreated TH. The tyrosine residues (positions 423, 428, and 432) within this peptide were mutated to phenylalanine to confirm the site(s) of nitration and assess the effects of mutation on TH activity. Single mutants expressed wild-type levels of TH catalytic activity and were inactivated by peroxynitrite while showing reduced (30-60%) levels of nitration. The double mutants Y423F,Y428F, Y423F,Y432F, and Y428F,Y432F showed trace amounts of tyrosine nitration (7-30% of control) after exposure to peroxynitrite, and the triple mutant Y423F,Y428F,Y432F was not a substrate for nitration, yet peroxynitrite significantly reduced the activity of each. When all tyrosine mutants were probed with PEO-maleimide activated biotin, a thiol-reactive reagent that specifically labels reduced cysteine residues in proteins, it was evident that peroxynitrite resulted in cysteine oxidation. These studies identify residues Tyr(423), Tyr(428), and Tyr(432) as the sites of peroxynitrite-induced nitration in TH. No single tyrosine residue appears to be critical for TH catalytic function, and tyrosine nitration is neither necessary nor sufficient for peroxynitrite-induced inactivation. The loss of TH catalytic activity caused by peroxynitrite is associated instead with oxidation of cysteine residues.  相似文献   

8.
9.
We have characterized a new locus, BRA3, leading to deregulation of the yeast purine synthesis genes (ADE genes). We show that bra3 mutations are alleles of the GUK1 gene, which encodes GMP kinase. The bra3 mutants have a low GMP kinase activity, excrete purines in the medium, and show vegetative growth defects and resistance to purine base analogs. The bra3 locus also corresponds to the previously described pur5 locus. Several lines of evidence indicate that the decrease in GMP kinase activity in the bra3 mutants results in GMP accumulation and feedback inhibition of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), encoded by the HPT1 gene. First, guk1 and hpt1 mutants share several phenotypes, such as adenine derepression, purine excretion, and 8-azaguanine resistance. Second, overexpression of HPT1 allows suppression of the deregulated phenotype of the guk1 mutants. Third, we show that purified yeast HGPRT is inhibited by GMP in vitro. Finally, incorporation of hypoxanthine into nucleotides is similarly diminished in hpt1 and guk1 mutants in vivo. We conclude that the decrease in GMP kinase activity in the guk1 mutants results in deregulation of the ADE gene expression by phenocopying a defect in HGPRT. The possible occurrence of a similar phenomenon in humans is discussed.  相似文献   

10.
11.
12.
13.
While studying the developmental functions of the Drosophila dopamine synthesis pathway genes, we noted interesting and unexpected mutant phenotypes in the developing trachea, a tubule network that has been studied as a model for branching morphogenesis. Specifically, Punch (Pu) and pale (ple) mutants with reduced dopamine synthesis show ectopic/aberrant migration, while Catecholamines up (Catsup) mutants that over-express dopamine show a characteristic loss of migration phenotype. We also demonstrate expression of Punch, Ple, Catsup and dopamine in tracheal cells. The dopamine pathway mutant phenotypes can be reproduced by pharmacological treatments of dopamine and a pathway inhibitor 3-iodotyrosine (3-IT), implicating dopamine as a direct mediator of the regulatory function. Furthermore, we show that these mutants genetically interact with components of the endocytic pathway, namely shibire/dynamin and awd/nm23, that promote endocytosis of the chemotactic signaling receptor Btl/FGFR. Consistent with the genetic results, the surface and total cellular levels of a Btl-GFP fusion protein in the tracheal cells and in cultured S2 cells are reduced upon dopamine treatment, and increased in the presence of 3-IT. Moreover, the transducer of Btl signaling, MAP kinase, is hyper-activated throughout the tracheal tube in the Pu mutant. Finally we show that dopamine regulates endocytosis via controlling the dynamin protein level.  相似文献   

14.
15.
Genetic Fine Structure of the BRONZE Locus in Maize   总被引:6,自引:6,他引:0       下载免费PDF全文
Dooner HK 《Genetics》1986,113(4):1021-1036
The bronze (bz) locus in maize, located in the short arm of chromosome 9 (9S), is the structural gene for the anthocyanin biosynthetic enzyme UFGT. The gene has been cloned and its physical map has been oriented relative to the centromere of 9S. We report here the genetic fine structure mapping of several biochemically characterized EMS-induced bz-E mutations, derived from the Bz-W22 isoallele, and Ds insertion bz-m mutations, derived from the Bz-McC isoallele. Two UFGT(-), CRM(+ ) mutants (bz-E2 and bz-E5), which genetically identify coding sequences in the gene, and three UFGT(-), CRM(- )bz-E mutants were mapped against the Ds insertion mutants bz-m1 and bz-m2(DI) by selecting Bz intragenic recombinants from heterozygotes of the type bz-E/bz-m . The exclusive occurrence of one recombinant outside marker class allowed the unambiguous placement of the mutants in a genetic fine structure map. Peculiarly, the two CRM(+)bz-E mutants lie upstream of the three CRM(-)bz-E mutants and at a considerable genetic distance. The UFGT allozymes encoded by the progenitor alleles Bz-W22 and Bz-McC differ in two properties, thermal stability and activity. The sites responsible for these properties were mapped as unselected markers among the Bz intragenic recombinants. The thermal stability site, which also identifies a coding region of the gene, mapped very close to the CRM(+)bz-E mutant sites. The site responsible for variation in activity, which probably identifies a region involved in regulation of expression of the bz locus, mapped at the 5' or proximal end of the locus. It was found to be inseparable from the Ds insertion in bz-m1 that lies very close to the 5' end of the transcribed region.-Evidence was obtained that the insertion of Ds within the bz gene has a suppressing effect on intragenic recombination. Additional data are also presented supporting our observation that Ds affects the pattern of intragenic recombination at bz.-Based on the total genetic length of the bz gene and on the physical size of the transcribed region, we estimate that one unit of recombination at bronze corresponds to 14 kb of DNA. This estimate is more than 100 times smaller than the average value for the whole genome and implies that there may be regions, such as bronze, that serve as hotspots for recombination.  相似文献   

16.
Mutants with reduced activity for beta-glucosidase (beta-d-glucoside glucohydrolase EC 3.2.1.21) were isolated from the haploid yeast Saccharomyces lactis. Tetrad analysis indicated that in each mutant a single genetic factor, closely linked or allelic to the structural gene for beta-glucosidase (B locus), is responsible for the decreased activity. beta-Glucosidases produced by wild-type and mutant strains are similar in molecular size and charge but differ in catalytic properties, thermal stability, and serological specificity, indicating that mutants are in the structural gene. All mutants retained their capacity to be induced by either methyl-beta-d-glucoside or glucose. In all cases, the mutant phenotype was dominant in heterozygous diploids.  相似文献   

17.
We have investigated the role of serine 40 (Ser-40) in tyrosine hydroxylase (TH) catalysis of basal and activated enzymes by protein kinase A (PKA)-mediated phosphorylation. Wild type and mutant TH were transiently and stably expressed in AtT-20 cells, and the enzymatic activities of the recombinant enzymes were analyzed. The specific enzymatic activity of transiently expressed TH mutants Ser-40-->leucine or-->tyrosine (Leu-40m or Tyr-40m) was higher than that of the wild type enzyme or of other mutants in which Ser-8, -19, and -31 were replaced by leucine. The kinetic studies carried out with the stably expressed TH show that the Km for the cofactor 6-methyltetrahydropterine is lower and the Ki for dopamine is higher when the enzymatic hydroxylation is catalyzed by the Leu-40m or Tyr-40m than by the wild type enzyme. The kinetic parameters and the pH profile of the enzymatic hydroxylation catalyzed by the Leu-40m or Tyr-40m are similar to the enzyme activated by PKA-mediated phosphorylation. We suggest that Ser-40 in TH exerts an inhibitory influence on the enzymatic activity, and its replacement with another amino acid by site-directed mutagenesis or its modification by phosphorylation leads to a change in conformation with an increased enzymatic activity. The importance of Ser-40 in the activation of TH by PKA-mediated phosphorylation was investigated by comparing the activation of the wild type enzyme with that of Leu-40m or Tyr-40m. The findings that the enzymatic activity is increased by PKA-mediated phosphorylation of the wild type enzyme, but not of the Leu-40m or Tyr-40m, demonstrate that phosphorylation at Ser-40 is essential for activation of TH by PKA. The findings that addition of ATP plus cAMP to homogenates from transfected AtT-20 cells stimulates the recombinant wild type TH activity indicate that these cells contain endogenous cAMP-dependent protein kinase.  相似文献   

18.
A genetic locus essential for the formate-dependent growth of Bradyrhizobium japonicum was isolated by complementation of ethyl methanesulfonate-induced mutants with a cosmid gene library of B. japonicum DNA. Three related cosmids containing 18.7 kilobase pairs of B. japonicum DNA in common were identified as being able to restore formate-dependent growth capability to mutants lacking either ribulosebisphosphate carboxylase or both ribulosebisphosphate carboxylase and phosphoribulokinase activities. To further localize the complementing gene(s), a series of four deletions spanning a total of 16.1 kilobase pairs were introduced into the B. japonicum chromosome. Each resulting deletion mutant lacked formate dehydrogenase activity and lacked ribulosebisphosphate carboxylase activity and immunologically detectable protein. Three of the four also lacked phosphoribulokinase activity. Two other mutants in which the deletion-bearing recombinant plasmid had integrated into the chromosome also lacked ribulosebisphosphate carboxylase activity and protein and phosphoribulokinase activities. The genetic locus defined by these mutants could contain the structural genes for these enzymes or a regulatory gene(s) controlling their expression or both.  相似文献   

19.
The clustering and coordinate regulation of many imprinted genes justifies positional searches for imprinted genes adjacent to known ones. We recently characterized a locus on 20q13, containing GNAS1, which has a highly complex imprinted expression pattern. In a search for neighbouring genes, we have now characterized a new gene, TH1, downstream of GNAS1. TH1 and GNAS1 are separated by more than 70 kb consisting largely of interspersed repetitive DNA. TH1 is the homologue of a gene that, in Drosophila, lies adjacent to the DNA repair gene mei-41. We have determined the full-length structures of human, mouse and Drosophila TH1. Though of unknown function, TH1 is highly conserved and widely expressed. Nonetheless, there is no similar Caenorhabditis elegans protein. We have also determined the complete genomic structures of human and Drosophila TH1. The Drosophila gene has five exons spanning 2.6 kb. The last three introns have precise equivalents in the human gene, which has 15 exons spanning 14 kb and is transcribed away from GNAS1. Using a single-nucleotide polymorphism in the 3' untranslated region, we have demonstrated biallelic TH1 expression in human fetal tissues, suggesting that, unlike GNAS1, TH1 is probably not imprinted. Immediately downstream of TH1 lies CTSZ, encoding the recently described cysteine protease, cathepsin Z. We have also elucidated the genomic structure of this gene; it has six exons spanning 12 kb and is oriented tail-to-tail with TH1, only 70 bp separating their polyadenylation sites. A polymorphism was again identified within the CTSZ 3' untranslated region and used to demonstrate biallelic expression in fetal tissues.  相似文献   

20.
Rats were submitted to a series of 10 daily electroconvulsive shocks (ECS). A first group of animals was killed 1 day after the last seizure and a second group 30 days later. Tyrosine hydroxylase (TH) activity was measured using an in vitro assay in the nucleus caudatus, anterior cortex, amygdala, substantia nigra, ventral tegmental area, and locus ceruleus. The mRNA corresponding to this enzyme (TH-mRNA) was evaluated using a cDNA probe at the cellular level in the ventral tegmental area, substantia nigra, and locus ceruleus. Met-enkephalin (MET)-immunoreactivity and the mRNA coding for the preproenkephalin (PPE-mRNA) were assayed in striatum and the central nucleus of the amygdala. The day after the last ECS an increase of TH activity was observed in the ventral tegmental area, locus ceruleus, and substantia nigra in parallel with a similar increase in the amygdala and striatum; in the anterior cortex TH activity remained unchanged. TH-mRNA was increased in the locus ceruleus, evidencing the presence in this structure of a genomic activation. The amounts of MET and PPE-mRNA were unaffected in the striatum but increased in the amygdala. Thirty days after the last ECS we observed a decrease of TH activity in the amygdala and of TH-mRNA amount in the ventral tegmental area. In the locus ceruleus TH-mRNA remained higher in treated animals than in controls whereas TH activity returned to control levels. These results demonstrate that a series of ECS induces an initial increase of the activity of mesoamygdaloid catecholaminergic neurons followed by a sustained decrease through alterations of TH gene expression which could mediate the clinical effect of the treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号