首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
beta-Arrestins are multifunctional adaptor proteins that regulate seven transmembrane-spanning receptor (7TMR) desensitization and internalization and also initiate alternative signaling pathways. Studies have shown that beta-arrestins undergo a conformational change upon interaction with agonist-occupied, phosphorylated 7TMRs. Although conformational changes have been reported for visual arrestin and beta-arrestin2, these studies are not representative of conformational changes in beta-arrestin1. Accordingly, in this study, we determine conformational changes in beta-arrestin1 using limited tryptic proteolysis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis in the presence of a phosphopeptide derived from the C terminus of the V(2) vasopressin receptor (V(2)Rpp) or the corresponding unphosphorylated peptide (V(2)Rnp). V(2)Rpp binds specifically to beta-arrestin1 causing significant conformational changes, whereas V(2)Rnp does not alter the conformation of beta-arrestin1. Upon V(2)Rpp binding, we show that the previously shielded Arg(393) becomes accessible, which indicates release of the C terminus. Moreover, we show that Arg(285) becomes more accessible, and this residue is located in a region of beta-arrestin1 responsible for stabilization of its polar core. These two findings demonstrate "activation" of beta-arrestin1, and we also show a functional consequence of the release of the C terminus of beta-arrestin1 by enhanced clathrin binding. In addition, we show marked protection of the N-domain of beta-arrestin1 in the presence of V(2)Rpp, which is consistent with previous studies suggesting the N-domain is responsible for recognizing phosphates in 7TMRs. A striking difference in conformational changes is observed in beta-arrestin1 when compared with beta-arrestin2, namely the flexibility of the interdomain hinge region. This study represents the first direct evidence that the "receptor-bound" conformations of beta-arrestins1 and 2 are different.  相似文献   

2.
Arrestins are regulatory proteins that bind specifically to ligand-activated phosphorylated G protein-coupled receptors to terminate G protein-mediated signaling, cause the internalization of the receptor-arrestin complex, and initiate additional intracellular signaling cascades. Multiple lines of evidence suggest that arrestin normally exists in an inactive basal state and undergoes conformational activation in the process of receptor binding. "Pre-activated" phosphorylation-independent arrestin mutants display increased binding to ligand-activated but unphosphorylated receptors. The mutations are believed to expose key receptor-binding regions, allowing the mutants to mimic, to some extent, the transition of arrestin to its active state. In the present study, amide hydrogen exchange (HX) and mass spectrometry (MS) were used to examine the inactive conformation of wild-type arrestin2 and compare its solution conformation with two pre-activated mutants (R169E and 3A (I385A, V386A, F387A)). The results suggest an unexpected level of structural organization within arrestin elements containing clathrin and adaptin2-binding sites that were previously believed to be completely disordered. Increased deuterium incorporation was observed in both mutant forms compared with wild-type, indicating a change in the conformation of the mutants. Three regions demonstrated significant differences in deuterium incorporation: the first 33 residues of the N terminus and residues 243-255 (both previously implicated in receptor interaction), and residues 271-299. The results suggest that subtle differences in conformation are responsible for the significant difference in biological activity displayed by pre-activated arrestin mutants and that similar changes occur in the process of arrestin binding to the receptor.  相似文献   

3.
Lin FT  Chen W  Shenoy S  Cong M  Exum ST  Lefkowitz RJ 《Biochemistry》2002,41(34):10692-10699
Beta-arrestins mediate agonist-dependent desensitization and internalization of G protein-coupled receptors. Previously, we have shown that phosphorylation of beta-arrestin1 by ERKs at Ser-412 regulates its association with clathrin and its function in promoting clathrin-mediated internalization of the receptor. In this paper we report that beta-arrestin2 is also phosphorylated, predominantly at residues Thr-383 and Ser-361. Isoproterenol stimulation of the beta(2)-adrenergic receptor promotes dephosphorylation of beta-arrestin2. Mutation of beta-arrestin2 phosphorylation sites to aspartic acid decreases the association of beta-arrestin2 with clathrin, thereby reducing its ability to promote internalization of the beta(2)-adrenergic receptor. Its ability to bind and desensitize the beta(2)-adrenergic receptor is, however, unaltered. These results suggest that, analogous to beta-arrestin1, phosphorylation/dephosphorylation of beta-arrestin2 regulates clathrin-mediated internalization of the beta(2)-adrenergic receptor. In contrast to beta-arrestin1, which is phosphorylated by ERK1 and ERK2, phosphorylation of beta-arrestin2 at Thr-383 is shown to be mediated by casein kinase II. Recently, it has been reported that phosphorylation of visual arrestin at Ser-366 prevents its binding to clathrin. Thus it appears that the function of all arrestin family members in mediating internalization of G protein-coupled receptors is regulated by distinct phosphorylation/dephosphorylation mechanisms.  相似文献   

4.
Visual arrestin quenches light-induced signaling by binding to light-activated, phosphorylated rhodopsin (P-Rh*). Here we present structure-function data, which in conjunction with the refined crystal structure of arrestin (Hirsch, J. A., Schubert, C., Gurevich, V. V., and Sigler, P. B. (1999) Cell, in press), support a model for the conversion of a basal or "inactive" conformation of free arrestin to one that can bind to and inhibit the light activated receptor. The trigger for this transition is an interaction of the phosphorylated COOH-terminal segment of the receptor with arrestin that disrupts intramolecular interactions, including a hydrogen-bonded network of buried, charged side chains, referred to as the "polar core." This disruption permits structural adjustments that allow arrestin to bind to the receptor. Our mutational survey identifies residues in arrestin (Arg175, Asp30, Asp296, Asp303, Arg382), which when altered bypass the need for the interaction with the receptor's phosphopeptide, enabling arrestin to bind to activated, nonphosphorylated rhodopsin (Rh*). These mutational changes disrupt interactions and substructures which the crystallographic model and previous biochemical studies have shown are responsible for maintaining the inactive state. The molecular basis for these disruptions was confirmed by successfully introducing structure-based second site substitutions that restored the critical interactions. The nearly absolute conservation of the mutagenically sensitive residues throughout the arrestin family suggests that this mechanism is likely to be applicable to arrestin-mediated desensitization of most G-protein-coupled receptors.  相似文献   

5.
Beta-arrestins are cytosolic proteins that regulate the signaling and the internalization of G protein-coupled receptors (GPCRs). Although termination of receptor coupling requires beta-arrestin binding to agonist-activated receptors, GPCR endocytosis involves the coordinate interactions between receptor-beta-arrestin complexes and other endocytic proteins such as adaptor protein 2 (AP-2) and clathrin. Clathrin interacts with a conserved motif in the beta-arrestin C-terminal tail; however, the specific molecular determinants in beta-arrestin that bind AP-2 have not been identified. Moreover, the respective contributions of the interactions of beta-arrestin with AP-2 and clathrin toward the targeting of GPCRs to clathrin-coated vesicles have not been established. Here, we identify specific arginine residues (Arg(394) and Arg(396)) in the beta-arrestin 2 C terminus that mediate beta-arrestin binding to AP-2 and show, in vitro, that these domains in beta-arrestin 1 and 2 interact equally well with AP-2 independently of clathrin binding. We demonstrate in HEK 293 cells by fluorescence microscopy that beta(2)-adrenergic receptor-beta-arrestin complexes lacking the beta-arrestin-clathrin binding motif are still targeted to clathrin-coated pits. In marked contrast, receptor-beta-arrestin complexes lacking the beta-arrestin/AP-2 interactions are not effectively compartmentalized in punctated areas of the plasma membrane. These results reveal that the binding of a receptor-beta-arrestin complex to AP-2, not to clathrin, is necessary for the initial targeting of beta(2)-adrenergic receptor to clathrin-coated pits.  相似文献   

6.
beta-Arrestins, proteins involved in the turn-off of G protein-coupled receptor (GPCR) activation, bind to the beta(2)-adaptin subunit of the clathrin adaptor AP-2. The interaction of beta(2)-adaptin with beta-arrestin involves critical arginine residues in the C-terminal domain of beta-arrestin and plays an important role in initiating clathrin-mediated endocytosis of the beta(2)-adrenergic receptor (beta(2)AR) (Laporte, S. A., Oakley, R. H., Holt, J. A., Barak, L. S., and Caron, M. G. (2000) J. Biol. Chem. 275, 23120--23126). However, the beta-arrestin-binding site in beta(2)-adaptin has not been identified, and little is known about the role of beta-arrestin/AP-2 interaction in the endocytosis of other GPCRs. Using in vitro binding assays, we have identified two glutamate residues (Glu-849 and Glu-902) in beta(2)-adaptin that are important in beta-arrestin binding. These residues are located in the platform subdomain of the C terminus of beta(2)-adaptin, where accessory/adapter endocytic proteins for other classes of receptors interact, distinct from the main site where clathrin interacts. The functional significance of the beta-arrestin/AP-2/clathrin complex in the endocytosis of GPCRs such as the beta(2)AR and vasopressin type II receptor was evaluated using mutant constructs of the beta(2)-adaptin C terminus containing either the clathrin and the beta-arrestin binding domains or the beta-arrestin-binding domain alone. When expressed in human embryonic kidney 293 cells, both constructs acted as dominant negatives inhibiting the agonist-induced internalization of the beta(2)AR and the vasopressin type II receptor. In addition, although the beta(2)-adaptin construct containing both the clathrin and beta-arrestin binding domains was able to block the endocytosis of transferrin receptors, a beta(2)-adaptin construct capable of associating with beta-arrestin but lacking its high affinity clathrin interaction did not interfere with transferrin receptor endocytosis. These results suggest that the interaction of beta-arrestin with beta(2)-adaptin represents a selective endocytic trigger for several members of the GPCR family.  相似文献   

7.
Photoactivated rhodopsin is quenched upon its phosphorylation in the reaction catalyzed by rhodopsin kinase and the subsequent binding of a regulatory protein, arrestin. We have found that heparin and other polyanions compete with photoactivated, phosphorylated rhodopsin to bind arrestin (48-kDa protein, S-antigen). This is shown (a) by the suppression of stabilized metarhodopsin II; (b) by changes in the digestion of arrestin in the presence of heparin; and (c) by the restoration of arrestin-quenched phosphodiesterase activity. When bound to arrestin, heparin also mimics phosphorylated rhodopsin by similarly exposing arrestin to limited proteolysis. We conclude that heparin and rhodopsin have similar means of binding to arrestin, and we propose a cationic region of arrestin (beginning with Lys163 of the bovine sequence) as the interaction site. In agreement with previous kinetic data we interpret the results in terms of a binding conformation of arrestin which is stabilized by rhodopsin or heparin and is open to proteolytic attack.  相似文献   

8.
Internalization of agonist-activated G protein-coupled receptors is mediated by non-visual arrestins, which also bind to clathrin and are therefore thought to act as adaptors in the endocytosis process. Phosphoinositides have been implicated in the regulation of intracellular receptor trafficking, and are known to bind to other coat components including AP-2, AP180 and COPI coatomer. Given these observations, we explored the possibility that phosphoinositides play a role in arrestin's function as an adaptor. High-affinity binding sites for phosphoinositides in beta-arrestin (arrestin2) and arrestin3 (beta-arrestin2) were identified, and dissimilar effects of phosphoinositide and inositol phosphate on arrestin interactions with clathrin and receptor were characterized. Alteration of three basic residues in arrestin3 abolished phosphoinositide binding with complete retention of clathrin and receptor binding. Unlike native protein, upon agonist activation, this mutant arrestin3 expressed in COS1 cells neither supported beta2-adrenergic receptor internalization nor did it concentrate in coated pits, although it was recruited to the plasma membrane. These findings indicate that phosphoinositide binding plays a critical regulatory role in delivery of the receptor-arrestin complex to coated pits, perhaps by providing, with activated receptor, a multi-point attachment of arrestin to the plasma membrane.  相似文献   

9.
A unique conformation of arrestin is crucial for its interaction with phosphorylated photolyzed rhodopsin. Conformational changes in arrestin were investigated using chemical modification and circular dichroism. We studied the kinetics of sulfhydryl modification of bovine arrestin in order to determine whether its conformation is altered by the presence of ligands or salts at different ionic strengths. We found that all three cysteines (stoichiometry was 2.7 +/- 0.06 3-carboxy-4-nitrophenyl sulfide (NbS)/arrestin) are accessible for modification by NbS2. Under pseudo-first-order conditions (30-100-fold excess of NbS2 over arrestin), the modifications of the 3 cysteines are indistinguishable. At higher concentrations of NbS2 (150-300-fold excess), the pseudo-first-order plot is not linear, and the reaction can be resolved into two processes that involve two classes of sulfhydryl groups. Addition of CaCl2, MgCl2, inorganic phosphate, MgATP, or MgGTP had little effect on the rate of modification of the cysteine residues; however, heparin and inositol hexakisphosphate, which have been shown to induce conformational changes in arrestin, block modification of one sulfhydryl group of arrestin and accelerate the modification of the remaining two. Analysis of CD spectra revealed that arrestin has virtually no alpha-helical structure, about 40% beta-structure, about 18% beta-turns, and about 40% other structure. The CD spectrum for arrestin did not change in the presence of heparin. These studies suggest that arrestin exists in equilibrium between two or more conformational states. However, it is proposed that conversion between these conformations occur without altering significantly the secondary structure of arrestin.  相似文献   

10.
Arrestin proteins play a key role in the desensitization of G protein-coupled receptors (GPCRs). Recently we proposed a molecular mechanism whereby arrestin preferentially binds to the activated and phosphorylated form of its cognate GPCR. To test the model, we introduced two different types of mutations into beta-arrestin that were expected to disrupt two crucial elements that make beta-arrestin binding to receptors phosphorylation-dependent. We found that two beta-arrestin mutants (Arg169 --> Glu and Asp383 --> Ter) (Ter, stop codon) are indeed "constitutively active." In vitro these mutants bind to the agonist-activated beta2-adrenergic receptor (beta2AR) regardless of its phosphorylation status. When expressed in Xenopus oocytes these beta-arrestin mutants effectively desensitize beta2AR in a phosphorylation-independent manner. Constitutively active beta-arrestin mutants also effectively desensitize delta opioid receptor (DOR) and restore the agonist-induced desensitization of a truncated DOR lacking the critical G protein-coupled receptor kinase (GRK) phosphorylation sites. The kinetics of the desensitization induced by phosphorylation-independent mutants in the absence of receptor phosphorylation appears identical to that induced by wild type beta-arrestin + GRK3. Either of the mutations could have occurred naturally and made receptor kinases redundant, raising the question of why a more complex two-step mechanism (receptor phosphorylation followed by arrestin binding) is universally used.  相似文献   

11.
The binding of arrestin to rhodopsin is initiated by the interaction of arrestin with the phosphorylated rhodopsin C-terminus and/or the cytoplasmic loops, followed by conformational changes that expose an additional high-affinity site on arrestin. Here we use an arrestin mutant (R175E) that binds similarly to phosphorylated and unphosphorylated, wild-type rhodopsin to identify rhodopsin elements other than C-terminus important for arrestin interaction. R175E-arrestin demonstrated greatly reduced binding to unphosphorylated cytoplasmic loop mutants L72A, N73A, P142A and M143A, suggesting that these residues are crucial for high-affinity binding. Interestingly, when these rhodopsin mutants are phosphorylated, R175E-arrestin binding is less severely affected. This effect of phosphorylation on R175E-arrestin binding highlights the co-operative nature of the multi-site interaction between arrestin and the cytoplasmic loops and C-terminus of rhodopsin. However, a combination of any two mutations disrupts the ability of phosphorylation to enhance binding of R175E-arrestin. N73A, P142A and M143A exhibited accelerated rates of dissociation from wild-type arrestin. Using sensitivity to calpain II as an assay, these cytoplasmic loop mutants also demonstrated reduced ability to induce conformational changes in arrestin that correlated with their reduced ability to bind arrestin. These results suggest that arrestin bound to rhodopsin is in a distinct conformation that is co-ordinately regulated by association with the cytoplasmic loops and the C-terminus of rhodopsin.  相似文献   

12.
Visual arrestin is converted from a 'basal' state to an 'activated' state by interaction with the phosphorylated C-terminus of photoactivated rhodopsin (R*), but the conformational changes in arrestin that lead to activation are unknown. Small-angle X-ray scattering (SAXS) was used to investigate the solution structure of arrestin and characterize changes attendant upon activation. Wild-type arrestin forms dimers with a dissociation constant of 60 micro m. Small conformational changes, consistent with local movements of loops or the mobile N- or C-termini of arrestin, were observed in the presence of a phosphopeptide corresponding to the C-terminus of rhodopsin, and with an R175Q mutant. Because both the phosphopeptide and the R175Q mutation promote binding to unphosphorylated R*, we conclude that arrestin is activated by subtle conformational changes. Most of the arrestin will be in a dimeric state in vivo. Using the arrestin structure as a guide [Hirsch, J.A., Schubert, C., Gurevich, V.V. & Sigler, P.B. (1999) Cell 97, 257-269], we have identified a model for the arrestin dimer that is consistent with our SAXS data. In this model, dimerization is mediated by the C-terminal domain of arrestin, leaving the N-terminal domains free for interaction with phosphorylated R*.  相似文献   

13.
Visual arrestin binds to the phosphorylated carboxy-terminal region of rhodopsin to block interactions with transducin and terminate signaling in the rod photoreceptor cells. A synthetic seven-phospho-peptide from the C-terminal region of rhodopsin, Rh(330-348), has been shown to bind arrestin and mimic inhibition of signal transduction. In this study, we examine conformational changes in this synthetic peptide upon binding to arrestin by high-resolution proton nuclear magnetic resonance (NMR). We show that the peptide is completely disordered in solution, but becomes structured upon binding to arrestin. A control, unphosphorylated peptide that fails to bind to arrestin remains highly disordered. Specific NMR distance constraints are used to model the arrestin-bound conformation. The models suggest that the phosphorylated carboxy-terminal region of rhodopsin, Rh(330-348), undergoes significant conformational changes and becomes structured upon binding to arrestin.  相似文献   

14.
Arrestins quench the signaling of a wide variety of G protein-coupled receptors by virtue of high-affinity binding to phosphorylated activated receptors. The high selectivity of arrestins for this particular functional form of receptor ensures their timely binding and dissociation. In a continuing effort to elucidate the molecular mechanisms responsible for arrestin's selectivity, we used the visual arrestin model to probe the functions of its N-terminal beta-strand I comprising the highly conserved hydrophobic element Val-Ile-Phe (residues 11-13) and the adjacent positively charged Lys(14) and Lys(15). Charge elimination and reversal in positions 14 and 15 dramatically reduce arrestin binding to phosphorylated light-activated rhodopsin (P-Rh*). The same mutations in the context of various constitutively active arrestin mutants (which bind to P-Rh*, dark phosphorylated rhodopsin (P-Rh), and unphosphorylated light-activated rhodopsin (Rh*)) have minimum impact on P-Rh* and Rh* binding and virtually eliminate P-Rh binding. These results suggest that the two lysines "guide" receptor-attached phosphates toward the phosphorylation-sensitive trigger Arg(175) and participate in phosphate binding in the active state of arrestin. The elimination of the hydrophobic side chains of residues 11-13 (triple mutation V11A, I12A, and F13A) moderately enhances arrestin binding to P-Rh and Rh*. The effects of triple mutation V11A, I12A, and F13A in the context of phosphorylation-independent mutants suggest that residues 11-13 play a dual role. They stabilize arrestin's basal conformation via interaction with hydrophobic elements in arrestin's C-tail and alpha-helix I as well as its active state by interactions with alternative partners. In the context of the recently solved crystal structure of arrestin's basal state, these findings allow us to propose a model of initial phosphate-driven structural rearrangements in arrestin that ultimately result in its transition into the active receptor-binding state.  相似文献   

15.
Visual arrestin inactivates the phototransduction cascade by specifically binding to light-activated phosphorylated rhodopsin. This study describes the combined use of insertional mutagenesis and immunochemical approaches to probe the structural determinants of arrestin function. Recombinant arrestins with insertions of a 10-amino acid c-Myc tag (EQKLISEEDL) were expressed in yeast and characterized. When the tag was placed on the C terminus after amino acid 399, between amino acids 99 and 100 or between residues 162 and 163, binding to rhodopsin was found to be very similar to that of wild-type arrestin. Two stable mutants with Myc insertions in the 68-78 loop were also generated. Binding to rhodopsin was markedly decreased for one (72myc73) and completely abolished for the other (77myc78). Limited proteolysis assays using trypsin in the absence or presence of heparin were performed on all mutants and confirmed their overall conformational integrity. Rhodopsin binding to either 162myc163 or 72myc73 arrestins in solution was completely inhibited in the presence of less than a 2-fold molar excess of anti-Myc antibody relative to arrestin. In contrast, the antibody did not block the interaction of the 399myc or 99myc100 arrestins with rhodopsin. These results indicate that an interactive surface for rhodopsin is located on or near the concave region of the N-domain of arrestin.  相似文献   

16.
Arrestins specifically bind activated and phosphorylated G protein-coupled receptors and orchestrate both receptor trafficking and channel signaling through G protein-independent pathways via direct interactions with numerous nonreceptor partners. Here we report the first successful use of solution NMR in mapping the binding sites in arrestin-1 (visual arrestin) for two polyanionic compounds that mimic phosphorylated light-activated rhodopsin: inositol hexaphosphate (IP6) and heparin. This yielded an identification of residues involved in the binding with these ligands that was more complete than what has previously been feasible. IP6 and heparin appear to bind to the same site on arrestin-1, centered on a positively charged region in the N-domain. We present the first direct evidence that both IP6 and heparin induced a complete release of the arrestin C-tail. These observations provide novel insight into the nature of the transition of arrestin from the basal to active state and demonstrate the potential of NMR-based methods in the study of protein-protein interactions involving members of the arrestin family.  相似文献   

17.
Hirsch JA  Schubert C  Gurevich VV  Sigler PB 《Cell》1999,97(2):257-269
G protein-coupled signaling is utilized by a wide variety of eukaryotes for communicating information from the extracellular environment. Signal termination is achieved by the action of the arrestins, which bind to activated, phosphorylated G protein-coupled receptors. We describe here crystallographic studies of visual arrestin in its basal conformation. The salient features of the structure are a bipartite molecule with an unusual polar core. This core is stabilized in part by an extended carboxy-terminal tail that locks the molecule into an inactive state. In addition, arrestin is found to be a dimer of two asymmetric molecules, suggesting an intrinsic conformational plasticity. In conjunction with biochemical and mutagenesis data, we propose a molecular mechanism by which arrestin is activated for receptor binding.  相似文献   

18.
beta-Arrestins have been shown to inhibit competitively G protein-dependent signaling and to mediate endocytosis for many of the hundreds of nonvisual rhodopsin family G protein-coupled receptors (GPCR). An open question of fundamental importance concerning the regulation of signal transduction of several hundred rhodopsin-like GPCRs is how these receptors of limited sequence homology, when considered in toto, can all recruit and activate the two highly conserved beta-arrestin proteins as part of their signaling/desensitization process. Although the serine and threonine residues that form GPCR kinase phosphorylation sites are common beta-arrestin-associated receptor determinants regulating receptor desensitization and internalization, the agonist-activated conformation of a GPCR probably reveals the most fundamental determinant mediating the GPCR and arrestin interaction. Here we identified a beta-arrestin binding determinant common to the rhodopsin family GPCRs formed from the proximal 10 residues of the second intracellular loop. We demonstrated by both gain and loss of function studies for the serotonin 2C, beta2-adrenergic, alpha2a)adrenergic, and neuropeptide Y type 2 receptors that the highly conserved amino acids, proline and alanine, naturally occurring in rhodopsin family receptors six residues distal to the highly conserved second loop DRY motif regulate beta-arrestin binding and beta-arrestin-mediated internalization. In particular, as demonstrated for the beta2 AR, this occurs independently of changes in GPCR kinase phosphorylation. These results suggest that a GPCR conformation directed by the second intracellular loop, likely using the loop itself as a binding patch, may function as a switch for transitioning beta-arrestin from its inactive form to its active receptor-binding state.  相似文献   

19.
Binding of arrestin to cytoplasmic loop mutants of bovine rhodopsin   总被引:5,自引:0,他引:5  
Raman D  Osawa S  Weiss ER 《Biochemistry》1999,38(16):5117-5123
The binding of arrestin to rhodopsin is a multistep process that begins when arrestin interacts with the phosphorylated C terminus of rhodopsin. This interaction appears to induce a conformational change in arrestin that exposes a high-affinity binding site for rhodopsin. Several studies in which synthetic peptides were used have suggested that sites on the rhodopsin cytoplasmic loops are involved in this interaction. However, the precise amino acids on rhodopsin that participate in this interaction are unknown. This study addresses the role of specific amino acids in the cytoplasmic loops of rhodopsin in binding arrestin through the use of site-directed mutagenesis and direct binding assays. A series of alanine mutants within the three cytoplasmic loops of rhodopsin were expressed in HEK-293 cells, reconstituted with 11-cis-retinal, prephosphorylated with rhodopsin kinase, and examined for their ability to bind in vitro-translated, 35S-labeled arrestin. Mutations at Asn-73 in loop I as well as at Pro-142 and Met-143 in loop II resulted in dramatic decreases in the level of arrestin binding, whereas the level of phosphorylation by rhodopsin kinase was similar to that of wild-type rhodopsin. The results indicate that these amino acids play a significant role in arrestin binding.  相似文献   

20.
The non-visual arrestins, arrestin-2 and arrestin-3, play a critical role in regulating the signaling and trafficking of many G protein-coupled receptors (GPCRs). Molecular insight into the role of arrestins in GPCR trafficking has suggested that arrestin interaction with clathrin, beta(2)-adaptin (the beta-subunit of the adaptor protein AP2), and phosphoinositides contributes to this process. In the present study, we have attempted to better define the molecular basis and functional role of arrestin-2 interaction with clathrin and beta(2)-adaptin. Site-directed mutagenesis revealed that the C-terminal region of arrestin-2 mediated beta(2)-adaptin and clathrin interaction with Phe-391 and Arg-395 having an essential role in beta(2)-adaptin binding and LIELD (residues 376-380) having an essential role in clathrin binding. Interestingly, arrestin-2-R169E, an activated form of arrestin that binds to GPCRs in a phosphorylation-independent manner, has significantly enhanced binding to beta(2)-adaptin and clathrin. This suggests that receptor-induced conformational changes in the C-terminal tail of arrestin-2 will likely play a major role in mediating arrestin interaction with clathrin-coated pits. In an effort to clarify the role of these interactions in GPCR trafficking we generated arrestin mutants that were completely and selectively defective in either clathrin (arrestin-2-DeltaLIELD) or beta(2)-adaptin (arrestin-2-F391A) interaction. Analysis of these mutants in COS-1 cells revealed that arrestin/clathrin interaction was essential for agonist-promoted internalization of the beta(2)-adrenergic receptor, while arrestin/beta(2)-adaptin interaction appeared less critical. Arrestin-2 mutants defective in both clathrin and beta(2)-adaptin binding functioned as effective dominant negatives in HEK293 cells and significantly attenuated beta(2)-adrenergic receptor internalization. These mutants should prove useful in better defining the role of arrestins in mediating receptor trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号