首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When a rat hepatoma cell (R-Y121B) homogenate was incubated at 37 degrees C, 30-70% of the total alkaline phosphatase was released into the supernatant fluid from the precipitate fractions. The release reached a plateau level after 10 h of incubation at 37 degrees C. The optimum pH value for the release was 7.4. Alkaline phosphatase activity increased during the incubation of the cell homogenates, but this increase was independent of the enzyme release. Serum increased not only alkaline phosphatase activity in the cultured cells but also enzyme release in their homogenates. In addition, we examined a rat liver homogenate and the following 11 cell lines: 3 hepatoma cell lines, including the R-Y121B cell line, 4 liver cell lines, 2 human urinary bladder carcinoma cell lines, a kidney cell line, and a mouse adrenal tumor cell line. Only in the cultured liver cell line and hepatoma cell lines, 30-60% of the total enzyme was released into the soluble fraction from the precipitate fractions; the release was not observed in the other cell lines, nor in the rat liver homogenate. The release of alkaline phosphatase took place in both heat-stable and heat-labile alkaline phosphatases. Alkaline phosphatase, extracted from cell homogenates, showed two bands during polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The mobilities of the two bands changed inversely with or without sodium dodecyl sulfate. In general, the alkaline phosphatase which showed slow mobility with sodium dodecyl sulfate was more readily released from the plasma membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Reduction in alkaline phosphatase activity was observed when HeLa S3 cells were grown in Puck's medium containing high concentrations of human serum. This effect was not seen with the enzyme of Chang liver 8A cells. The induction of increased alkaline phosphatase in HeLa S3 by prednisolone or by osmolality changes was not prevented by serum. The concentration of serum in the culture medium had no influence on acid phosphatase activity.  相似文献   

3.
The relationship between alkaline phosphatase activity and cell growth has been studied in hamster cells transformed by different carcinogens. About 90% of normal hamster embryo cells were constitutively positive for alkaline phosphatase activity (AP+). However, there were no AP+ cells in cell lines transformed after treatment with the chemical carcinogens dimethylnitrosamine or 4-nitro-quinoline-N-oxide and 0.02% and 4% AP+ cells in cell lines transformed by polyoma virus or Simian virus 40. The glucocorticoid hormone, prednisolone, induced alkaline phosphatase activity in 12% and 44% of the enzyme-negative (AP?) cells in cell lines transformed by polyoma or Simian virus 40, but this hormone did not induce alkaline phosphatase activity in AP? cells from cell lines transformed after treatment with the chemical carcinogens. Treatment of polyoma transformed AP? cells with the mutagen N-methyl-N′-nitro-N-nitro-soguanidine produced AP+ cells, whereas no AP+ cells were found after mutagen treatment of AP? cells from the chemically transformed cell lines. Studies on spontaneous segregation in the polyoma transformed cell line has shown that AP+ cells segregated AP? cells both in vitro and in vivo, although no spontaneous segregation was observed from AP? to AP+ cells. AP+ cells, compared to AP? cells, showed a decrease in DNA synthesis, cell multiplication, the ability to form colonies in soft agar and tumorogenicity in animals. AP? cells induced for alkaline phosphatase activity by prednisolone, showed the same growth properties in vitro as uninduced AP? cells. The decreased cell growth found in AP+ cells which were constitutive for alkaline phosphatase activity was therefore not found in the hormone induced AP? cells. The results indicate that constitutive alkaline phosphatase activity appears to be related to the regulation of cell growth and that AP? cells have a selective advantage over AP+ cells.  相似文献   

4.
Summary A new method has been developed to count cells “in situ”, based on a fluorogenic enzyme assay that measures the activity of alkaline phosphatase. Increasing cell number was shown to correlate closely with alkaline phosphatase activity and this relationship did not change with time in culture. The alkaline phosphatase assay (ALP assay) was able to estimate relative cell numbers over a range from about 104 to 5×105 for many cell types, including Hep-2, a derivative of HeLa, several human colorectal cell lines SW1222, SW837, LS174T and HT29, a normal human diploid cell strain MRC5 and a rodent line NIH-3T3. The ALP assay is rapid and efficient, making it a useful method for studying growth assays. Editor's Statement This paper describes a quick method for quantitation of cell number in microcultures. Such procedures are valuable for the many situations in which minimizing cells and medium volume is desirable, although somewhat specialized equipment is required for the procedure. An alternative procedure for quantitation of cells in microtiter culture appeared previously in this journal (McCaffrey, et al., 24∶247–252).  相似文献   

5.
The increase in alkaline phosphatase in asynchronous cultures of HeLa S3 cells grown in medium supplemented with hydrocortisone is characterized by a lag period of 10–12 hr. Present studies utilizing synchronous cell populations indicate: (a) a minimum of 8–10 hr of incubation with hydrocortisone is necessary for maximum induction of alkaline phosphatase; (b) the increase in enzyme activity produced by hydrocortisone is initiated exclusively in the synthetic phase of the cell cycle; (c) alkaline phosphatase activity does not vary appreciably over a normal control cell cycle. Radioactive hydrocortisone is rapidly distributed into HeLa cells irrespective of their position in the cell cycle, indicating that inductive effects are not governed by selective permeability during the cell cycle. Hydrocortisone-1,2-[3H] diffuses back from the cell into the medium when the cells are incubated in fresh medium containing no hydrocortisone, and the alkaline phosphatase induction, under these conditions, is completely reversible.  相似文献   

6.
The alkaline phosphatase content of different tissue culture cell lines has been shown to vary from no detectable activity to high enzyme concentration. Within the epithelial lines studied alkaline phosphatase is either constitutive or inducible. Two epithelial cell strains in which alkaline phosphatase was "absent" could be induced to develop significant amounts of the enzyme when grown in the presence of Δ1-hydrocortisone. Phosphate did not repress enzyme induction by prednisolone. Under conditions of deadaptation the induced enzyme was diluted by cell multiplication. The mouse fibroblastic L line and several human fibroblastic lines did not contain alkaline phosphatase when grown under the conditions described nor could they be induced to produce the enzyme when cultivated in medium with prednisolone. Δ1-Hydrocortisone has other characteristic effects on established mammalian cell cultures which vary among cell lines. Human epithelial lines show reduction in cell multiplication with increase in mitotic index. The cytoplasm is increased and cell volume is nearly doubled. Mouse fibroblasts show a similar reduction in cell multiplication with a decrease in mitotic index. There is no increase in cell cytoplasm. Human fibroblast strains show no inhibition of multiplication or alteration in total cell protein when grown in medium containing prednisolone. Antisera prepared against "negative" prednisolone-inducible human cell lines and against a positive human line inhibited alkaline phosphatase activity to an equal degree.  相似文献   

7.
Plectin involved in activation of kinases in cell signaling pathway and plays important role in cell morphology and migration. Plectin knockdown promotes cell migration by activating focal adhesion kinase and Rac1-GTPase activity in liver cells. Sorafenib is a multi-targeting tyrosine kinase inhibitor that improves patient survival on hepatocellular carcinoma. The aim of this study is to investigate the correlation between the expression of plectin and cell migration as well as the sensitivity of hepatoma cell lines exposing to sorafenib. Hepatoma cell lines PLC/PRF/5 and HepG2 were used to examine the level of plectin expression and cell migration in comparison with Chang liver cell line. In addition, sensitivity of the 3 cell lines to sorafenib treatment was also measured. Expression of plectin was lower in PLC/PRF/5 and HepG2 hepatoma cells than that of Chang liver cells whereas HepG2 and PLC/PRF/5 cells exhibit higher rate of cell migration in trans-well migration assay. Immunohistofluorecent staining on E-cadherin revealed the highest rate of collective cell migration in HepG2 cells and the lowest was found in Chang liver cells. Likewise, HepG2 cell line was most sensitive to sorafenib treatment and Chang liver cells exhibited the least sensitivity. The drug sensitivity to sorafenib treatment showed inverse correlation with the expression of plectin. We suggest that plectin deficiency and increased E-cadherin in hepatoma cells were associated with higher rates of cell motility, collective cell migration as well as higher drug sensitivity to sorafenib treatment.  相似文献   

8.
A comparative study of some physico-chemical properties of alkaline phosphatase of a human cell line, the EUE, with high level of enzyme and one of its clonal derivatives the E6D, with low activity, has been carried out. Electrophoretic analysis reveals a multiple banding pattern within each line and qualitative differences between the two lines. The alkaline phosphatase activity of the E6D cell extracts is almost completely inhibited by 5 × 10?2 M inorganic phosphate while in the EUE the enzymic activity is reduced to one third under these conditions. The enzymes of the two lines show also a different thermostability which is not referable to extrinsic factors, as demonstrated by mixing experiments. The time course of heat inactivation at 70°C suggests molecular heterogeneity in each line, and a prevalence of a thermostable fraction in the cells with low activity and a thermolabile one in those with high enzymic levels. A rough estimate of inactivation constants does not rule out the possibility that the molecular species in the two lines are the same but in different proportions. The cytological analysis confirms the relationship between the number of small acrocentric chromosomes and alkaline phosphatase levels. The significance of the biochemical data in relation to the proposed model of a gene dosage effect is discussed.  相似文献   

9.
Plasma membrane localization of alkaline phosphatase in HeLa cells.   总被引:3,自引:0,他引:3  
The localization of alkaline phosphatase in HeLa cells was examined by electron microscopic histochemistry and subcellular fractionation techniques. Two monophenotypic sublines of HeLa cells which respectively produced Regan and non-Regan isoenzymes of alkaline phosphatase were used for this study. The electron microscopic histochemical results showed that in both sublines the major location of alkaline phosphatase is in the plasma membrane. The enzyme reaction was occasionally observed in some of the dense body lysosomes. This result was supported by data obtained from a subcellular fractionation study which showed that the microsomal fraction rich in plasma membrane fragments had the highest activity of alkaline phosphatase. The distribution of this enzyme among the subcellular fractions closely paralleled that of the 5'-nucleotidase, a plasma membrane marker enzyme. Characterization of the alkaline phosphatase present in each subcellular fraction showed identical enzyme properties, which suggests that a single isoenzyme exists among fractions obtained from each cell line. The results, therefore, confirm the reports suggesting that plasma membrane is the major site of alkaline phosphatase localization in HeLa cells. The absence of any enzyme reaction in the perimitochondrial space in these cultured tumor cells also indicates that the mitochondrial localization of the Regan isoenzyme reported in ovarian cancer may not be a common phenomenon in Regan-producing cancer cells.  相似文献   

10.
Alkaline phosphatase produced by HeLa cells differs in its chemical and physical properties from the enzyme found in adult organs and tissues (Cox and Griffin, 1967). In the present study HeLa cell alkaline phosphatase was compared to a fetal form of the enzyme found in human placenta. Both enzymes have approximately the same molecular weight as judged by sucrose density gradients, and the chemical and physical properties of these alkaline phosphatases are similar. The electrophoretic pattern of the HeLa cell enzyme resembles the placental alkaline phosphatase of the heterozygous FS phenotype except that it is slower moving. Double immunodiffusion using an antibody against HeLa cell alkaline phosphatase and placental and HeLa cell enzymes as antigens shows a single line of partial identity between the two enzymes, with a small spur suggesting additional antigenic sites on the HeLa cell enzyme. The data suggest that malignant cells in culture, HeLa, are producing a fetal-like alkaline phosphatase probably by derepression of the genome. However, the electrophoretic and immunological characteristics of the enzyme are altered sufficiently so that it can be distinguished from the normally produced fetal enzyme.This work was supported by U.S. Public Health Service Grant GM 15508 and the Health Research Council of the City of New York.Fourth-year student; Honors Program.Career Scientist Health Research Council of the City of New York.  相似文献   

11.
Summary Several cell lines, originally thought to be derived from a human placenta at term but possibly HeLa-contaminated, have been studied. These cells secrete a protein indistinguishable immunochemically from the alpha subunit of chorionic gonadotropin but not the beta subunit of chorionic gonadotropin or placental lactogen. Complete chorionic gonadotropin was detected but amounted to less than 1% of the level of the alpha subunit. The cells also produce an alkaline phosphatase similar to placental alkaline phosphatase in immunochemical, gel-electrophoretic, and heat-denaturation properties. They induce tumor growth when inoculated into nude mice. These cells are aneuploid and have a model chromosome number of 66. The common HeLa karyologic markers, designated 1, 2, and 3, and A-type glucose-6-phosphate dehydrogenase are present in these cells. HeLa cells have not previously been shown to secrete theα subunit of hCG.  相似文献   

12.
Alkaline phosphatese activity of HeLa cells is increased from 3- to 8-fold during growth in medium with certain aliphatic monocarboxylates. The four-carbon fatty acid salt, sodium butyrate, is the most effective “inducer” with propionate (C3), pentanoate (C5) and hexanoate (C6) having lesser effects. Other straight-chain aliphatic monocarboxylates, branched-chain analogues of inducers, hydroxylated derivatives, and metabolytes structurally related to butyrate are ineffective in mediating an increase in enzyme activity, indicating stringent structural requirements for inducers. The kinetics of increase in alkaline phosphatase activity in HeLa cells shows a 20–30 h lag period after adding the aliphatic acid followed by a rapid linear increase of enzyme activity. Protein synthesis is required for “induction”. The isozyme of HeLa alkaline phosphatase induced by monocarboxylates is the carcinoplacental form of the enzyme as determined by stereospecific inhibition by the l-enantiomorphs of phenylalanine and tryptophan, heat stability, and immunoreactivity with antibody against the human placental enzyme.Monocarboxylates that mediate increased alkaline phosphatase activity inhibit HeLa cell multiplication. Inhibition of HeLa cell growth may be necessary for induction and this hypothesis is supported by the findings that three different inhibitors of DNA synthesis, i.e. hydroxyurea, 1-β-d-arabinfuranosyl cytosine and methotrexate, also increase alkaline phosphatase activity. These inhibitors are synergistic with butyrate in causing HeLa cells to assume a more spindle-like shape and in producing an up-to 25-fold increase of enzyme activity. Studies on the modulation of carcinoplacental alkaline phosphatase by monocarboxylates commonly used as antimicrobial food additives and by anti-neoplastic agents may provide methods to evoke “tumor markers” of human occult malignancies. These drug-induced elevations of fetal isozyme activity may further our understanding of gene expression in human cells.  相似文献   

13.
Characteristics of 5'-nucleotide phosphodiesterase (phosphodiesterase I, EC 3.1.4.1) and alkaline phosphatase (EC 3.1.3.1) activities in tumor cell lines of human and murine origin were examined. Of the 15 cell lines tested, 5'-nucleotide phosphodiesterase activity in 13 cell lines and alkaline phosphatase activity in 10 cell lines were inhibited by N-ethylmaleimide and activated by dithiothreitol (N-ethylmaleimide-sensitive), and suggested to be SH-enzymes. In contrast, the two phosphohydrolases from normal tissues were inactivated by dithiothreitol, but not by N-ethylmaleimide (dithiothreitol-sensitive). There was only one tumor cell line in which both activities were dithiothreitol-sensitive. Human hepatoma PLC/PRF/5 cells appear to possess both types of 5'-nucleotide phosphodiesterase and alkaline phosphatase, and the subcellular distribution of these enzymes in this cell line was investigated. Dithiothreitol-sensitive 5'-nucleotide phosphodiesterase and alkaline phosphatase of PLC/PRF/5 cells were localized in the plasma membrane as in normal tissues, but N-ethylmaleimide-sensitive phosphohydrolases were soluble cytosolic proteins. N-Ethylmaleimide-sensitive 5'-nucleotide phosphodiesterase and alkaline phosphatase activities from other cell lines were also recovered in the cytosol. Molecular masses of cytosolic N-ethylmaleimide-sensitive phosphohydrolases were apparently smaller than their membrane-bound dithiothreitol-sensitive counterparts, as judged from gel filtration. It was concluded that many tumor cell lines lack plasma membrane 5'-nucleotide phosphodiesterase and alkaline phosphatase, but express enzymes with similar activities in the cytosol, with properties clearly distinguishable from enzymes so far characterized.  相似文献   

14.
Alkaline phosphatase (E.C.3.1.3.1.) has been used as a marker for embryonal carcinoma cells which constitute the multipotential stem cells of the mouse teratoma. Studies by other investigators based on kinetics of thermal inactivation and L-phenylalanine inhibition have shown that the alkaline phosphatase of the teratoma differs from the mouse intestinal and liver isozymes, but resembles the isozymes of kidney and placenta. Since functional characterization of nonpurified enzymes is not the most accurate means for distinguishing different molecular forms of an enzyme, we have partially purified the enzymes from the ascitic (embryoid body) and solid tumor forms of the OTT-6050 teratoma line, and utilized the technique of electrophoresis in polyacrylamide gels to compare the teratoma enzyme with isozymes from kidney and placenta. Covalent 32PO4-labeling of the alkaline phosphatases and polyacrylamide gel electrophoresis in sodium dodecylsulfate was also used to compare the subunit molecular weights of the enzymes. The results indicate that the mouse teratoma enzyme is distinct from the kidney and placental isozymes. Since histochemical studies have localized the enzyme to the stem cell population of the teratoma, the results imply that stem cell alkaline phosphatase is a distinct isozyme. The embryoid bodies contain a second alkaline phosphatase which may correspond to the placental isozyme. This enzyme may be attributed to the outer cell layer of embryoid bodies of the ascitic tumor, since this cell type histochemically demonstrates alkaline phosphatase activity.  相似文献   

15.
Epidemic keratoconjunctivitis (EKC) is a severe eye infection caused mainly by adenovirus type 8 (Ad8), Ad19, and Ad37. We have shown that the EKC-causing adenoviruses use sialic acid as a cellular receptor on A549 cells instead of the coxsackie-adenovirus receptor, which is used by most adenoviruses. Recently, Wu et al. (Virology 279:78-89, 2001) proposed that Ad37 uses a 50-kDa protein as a receptor on Chang C conjunctival cells and that this interaction is independent of sialic acid. According to the American Type Culture Collection, this cell line carries HeLa cell markers and should be considered to be a genital cell line. This prompted us to investigate the function of sialic acid as a cellular receptor for Ad37 in Chang C cells. In this study, we demonstrate that enzymatic removal or lectin-mediated blocking of cell surface sialic acid inhibits the binding of Ad37 virions to Chang C cells, as does soluble, virion-interacting sialic acid-containing substances. The binding was Ca2+ or Mg2+ ion independent and mediated by the knob domain of the trimeric viral fiber polypeptide. Moreover, Ad37 virions infected Chang C cells and two other genital cell lines (HeLa and SiHa) as well as a corneal cell line in a strictly sialic acid-dependent manner. From these results, we conclude that Ad37 uses sialic acid as a major receptor in cell lines derived from both genital and corneal tissues.  相似文献   

16.
Extracts from HeLa S3 cells, human liver, and rat liver were found to contain an activity that transfers the methyl group from O6-methyl-guanine residues in DNA to a cysteine residue of an acceptor protein. The molecular weights of the acceptor proteins in HeLA cells and human liver are 24,000 ± 1,000 and 23,000 ± 1,000. respectively. Assuming that each acceptor molecule is used only once, the average number of acceptor molecules in HeLa cells was calculated to be about 50,000. The extracts also contained 3-methyl-adenine-DNA glycosylase activity and 7-methyl-guanine-DNA glycosylase activity, although the latter activity was not detected in extracts from human liver in our assay system. Thus, the three major alkylation products resulting from the effect of methylating agents, such as N-methyl-N-nitroso urea, can all be repaired in animal cells. Pretreatment of HeLa cells with N-methyl-N′-nitro-N-nitrosoguanidinc (0.1 μg/ml) strongly reduced the capacity of HeLa cell extracts to repair O6-methyl-guanine residues, while the activity of three DNA-N-glycosylases was essentially unaltered. This inactivation was not caused by a direct methylation of the enzyme by the carcinogen. The results demonstrate that the mechanism of repair of O6-methyl-guaninc residues, in DNA is strikingly similar in E coli and animal cells, including humans.  相似文献   

17.
Established cell lines derived from human urinary bladder carcinomas produce heat-stable alkaline phosphatase [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] which resembles the oncofetal enzyme of HeLa S3. Rat bladder cancer cell lines derived from chemically induced tumors produce heat-labile alkaline phosphatase. Corticosteroids and/or hyperosmolality do not influence the enzyme of rodent cells, but induce increased levels of activity in human cells. The increase is most pronounced when human cells multiply in hyperosmolar medium containing prednisolone. Under these conditions a rise of over 100-fold in specific activity is noted. This synergistic effect, not seen with other cultured heteroploid cells, may represent a specific characteristic of cells derived from human bladder tumors.  相似文献   

18.
In view of the possible utilization of aphidicolin, a specific inhibitor of DNA polymerase α, in the treatment of neoplastic diseases, it seemed important to assess the mutagenic effect of the drug and the possible modification induced by metabolic activation in the liver. This paper shows that aphidicolin lacks mutagenicity in the Ames' Salmonella-microsome test in agreement with our previous observation that it does not induce DNA repair synthesis in HeLa cells. During the studies of mutagenicity we have observed that aphidicolin is converted to inactive derivative(s) by rat liver microsomal oxidases. The reaction is dependent on time and temperature and requires NADP+ and glucose-6-P. The metabolites are not mutagenic and they do not induce DNA repair synthesis in HeLa cells. Therefore the possible anti-cancer use of aphidicolin is not hampered by its partial metabolic inactivation in liver. Our results suggest however that aphidicolin will possibly be clinically useful at concentrations higher than those expected from our studies with human DNA polymerase α in vitro and human neoplastic cell lines in vivo. The metabolic derivative(s) of aphidicolin is inactive both against cellular DNA polymerase α and Herpes simplex viral DNA polymerase.  相似文献   

19.
20.
The alkaline phosphatase (ALP) activity in eight independent cell lines derived from human testicular germ cell tumors was characterized. Seven out of eight of the lines had high ALP levels, and most of the activity in each case was of the liver/bone/kidney ALP type, as judged by thermostability, inhibition, and electrophoretic studies. Low levels of a heat stable, placental-like ALP were also present in these seven lines; only a small subpopulation of the cells of each line reacted strongly with an anti-placental ALP monoclonal antibody. The heat-stable, placental-like isozyme characteristic of these lines differed from the normal placental ALP in its inhibition profile. Thus it is possible that a subpopulation of the cells in these lines expresses a new embryonic ALP form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号