首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transformed 3T3 cells incubated with ATP at an alkaline pH become permeable to phosphorylated compounds. The increase in membrane permeability can be induced by incubation with ATP at a neutral pH but only if sodium fluoride is present. Fluoride is not necessary for activation of the permeability change in these cultures at the alkaline pH. The effect of fluoride is very rapid, and sodium fluoride by itself does not alter membrane permeability. The alteration of membrane permeability by ATP in 3T6 cells is reversible; the permeability barrier is restored by switching to neutral buffer in the presence or absence of divalent cations. The restoration of the membrane permeability barrier is prevented by fluoride, and by ATP itself; this action of ATP is specific and no other nucleoside triphosphates or chelating agents produce this effect. Untransformed 3T3 cells do not exhibit any appreciable change in permeability as a result of ATP treatment either in the presence or absence of fluoride. These results are consistent with the presence on the transformed cell surface of an ATP-requiring protein kinase and a fluoride-inhibitable protein phosphatase, which would be involved in the control of membrane permeability.  相似文献   

2.
Inactivated Sendai virus, polyethylene glycol and Tween 80 were employed as agents to make X-irradiated CHO cells permeable for Neurospora endonuclease, in studies designed to evaluate the influence of this enzyme on the frequencies of X-ray-induced chromosome aberrations. Polyethylene glycol and Tween 80 were found not to be very efficient in making cells permeable. Besides, polyethylene glycol was found to increase the frequencies of X-ray-induced chromosomal aberrations.  相似文献   

3.
When grown on permeable supports, pancreatic duct adenocarcinoma CAPAN-1 cells establish very high values of transepithelial resistance (TER). The addition of ethanol produced a dose-related, reversible drop in the TER of these cells, ranging from 15% (with 1% ethanol) to 65% (with 10% ethanol). The ethanol effect was rapid and reversible. The resistance decrease was associated with an increase in monolayer permeability to mannitol. No significant decrease in cell ATP was detected for ethanol concentrations lower than 7%. Confocal vertical sections of calcein-loaded monolayers of CAPAN-1 cells, grown on plasticware, showed a progressive deflation of domes detectable after 5 min of treatment with 2% ethanol. Incubation in an ethanol-free medium caused a progressive dome restoration. Immunocytochemical analysis of ethanol-treated cells indicated that ZO-1 and occludin exhibited clear cut distribution changes while the perijunctional actin pattern was slightly modified. Electron microscopy showed that a discrete intercellular space was detectable between adjacent ethanol-treated cells but not between control cells. These data indicate that ethanol is a tight junction barrier opener in pancreatic duct cells.  相似文献   

4.
The loss of facilitated glucose transport of red cells occurring in the newborn pig was monitored in 11 density-separated cells from birth to a 4 wk of age. At birth there was a threefold increase in glucose permeability from the lightest cells to the most dense, suggesting that cells having progressively less glucose permeability are released into the circulation as gestation proceeds. Because of extraordinary stimulation of erythropoietic activity, the uppermost top fraction constituting 2-3 percent of the total cells is composed purely of reticulocytes in the growing animal. The glucose permeability of these reticulocytes which at birth has a slow but significant rate of 3.7 μmol/ml cell x min at 25 degrees C is rapidly decreased within 3-4 days to the level of reticulocytes produced in the adult in response to phenylhydrazine assault. Moreover, reticulocytes themselves discard their membrane permeability to glucose in the course of maturation to red cells. Thus, even though reticulocytes at birth are permeable to glucose, they will become red cells practically impervious to glucose within a few days. These findings suggest that the transition from a glucose- permeable fetal state to a glucose-impermeable postnatal state is brought about by two mechanisms: (a) dilution of fetal cells by glucose-impervious cells produced coincidentally with or shortly after birth; and (b) elimination of fetal cells, which have a shorter half-life, from the circulation.  相似文献   

5.
An attempt was made to estimate the number of Escherichia coli K-12 cells rendered permeable to antibiotics under Ca2+ treatment. The effect of cold factor and Ca2+ alone as well as the cell age on the induction of permeability and the energy dependence of the latter were also investigated. About 70-75% and more exponentially growing cells as a result of Ca2+ treatment became sensitive to actinomycin, rubomycin and olivomycin. This number was somewhat lower (40-50%) in sationary phase culture. A fraction (20-30%) of stationary phase cells appeared to be sensitive to antibiotics even without Ca2+ pretreatment. Preincubation of the cells in cold in the absence of Ca2+ cations did not induce the cell permeability. The transport of antibiotics inside the cell was not prevented by an uncoupler of oxidative phosphorylation --carbonylcyanid-m-chlorophenylhydrazone (CCCP). It is suggested that the cells which are rendered permeable to tested antibiotics represent the "compentent" cells capable to uptake molecules of exogenous DNA as well.  相似文献   

6.
Role of mitochondrial permeability transition pores in mitochondrial autophagy   总被引:12,自引:0,他引:12  
During autophagy, cells rid themselves of damaged and superfluous mitochondria, as well as other organelles. This activation of mitochondrial turnover could be the result of changes in the physiological state of mitochondria. Confocal microscopy and fluorescence techniques indicate that onset of mitochondrial permeability transition is one such change. The mitochondrial permeability transition is a reversible phenomenon whereby the mitochondrial inner membrane becomes freely permeable to solutes of less than 1500 Da. At onset of the mitochondrial permeability transition, mitochondria depolarize, uncouple, and undergo large amplitude swelling due to opening of permeability transition pores, which may form by aggregation of damaged, misfolded membrane proteins. When injurious cellular stresses occur, cells may protect themselves using autophagy to remove damaged mitochondria and mutated mitochondrial DNA. Ca2+ overloading, reactive oxygen and nitrogen species, decreased mitochondrial membrane potential, and oxidation of pyridine nucleotides and glutathione all promote mitochondrial damage and onset of the mitochondrial permeability transition. The mitochondrial permeability transition is also associated with necrosis and apoptosis after a variety of stimuli. This review emphasizes the role of the mitochondrial permeability transition as a key event in mitochondrial autophagy.  相似文献   

7.
Evidence for Two States of F Pili   总被引:1,自引:1,他引:0       下载免费PDF全文
The addition of phenethyl alcohol (PEA) to cultures of male strains of Escherichia coli rapidly prevents the adsorption of the male-specific bacteriophages f1 and f2 to the donor cells. The adsorption of f2 to F pili in cell-free preparations is unaffected by PEA. In a mating system, PEA alters the kinetics of gene transfer in minimal medium but not in broth. Sodium cyanide, azide, and iodoacetate also apparently inhibit f2 adsorption to cells but not to detached F pili. The phage adsorption inhibitory action of PEA is completely reversible in the presence of 100 mug of chloramphenicol per ml.  相似文献   

8.
We present evidence that ethanol alters intracellular poly(adenosine diphosphoribose) metabolism and we further describe the mechanism by which ethanol exerts its effect on polymer synthesis. One percent ethanol stimulates polymer accumulation as much as 2.5-fold but does not alter polymer degradation in intact cells following DNA damage. Ethanol directly stimulates polymer synthesis following low doses of DNA damage induce by deoxyribonuclease I in a nucleotide-permeable cell system that does not possess a functional polymer turnover system. Ethanol has no measurable effect on polymer synthesis in undamaged nucleotide-permeable cells or in permeable cells treated with high doses of deoxyribonuclease I. Ethanol concentrations that stimulate poly(adenosine diphosphoribose) polymerase activity in vitro specifically lower KDNA without affecting KNAD or Vmax. The results clearly show that ethanol alters the binding of this enzyme to the DNA component of chromatin and that this altered binding is responsible for the activation of the enzyme. Altered affinity of poly(adenosine diphosphoribose) polymerase and perhaps other regulatory proteins for chromatin may play an important role in the pathology of alcohol.  相似文献   

9.
Fluid-free alveolar space is critical for normal gas exchange. Influenza virus alters fluid transport across respiratory epithelia producing rhinorrhea, middle ear effusions, and alveolar flooding. However, the mechanism of fluid retention remains unclear. We investigated influenza virus strain A/PR/8/34, which can attach and enter mammalian cells but is incapable of viral replication and productive infection in mammalian epithelia, on epithelial sodium channels (ENaC) in rat alveolar type II (ATII) cells. In parallel, we determined the effects of virus on amiloride-sensitive (i.e., ENaC-mediated) fluid clearance in rat lungs in vivo. Although influenza virus did not change the inulin permeability of ATII monolayers, it rapidly reduced the net volume transport across monolayers. Virus reduced the open probability of single ENaC channels in apical cell-attached patches. U-73122, a phospholipase C (PLC) inhibitor, and PP2, a Src inhibitor, blocked the effect of virus on ENaC. GF-109203X, a protein kinase C (PKC) inhibitor, also blocked the effect, suggesting a PKC-mediated mechanism. In parallel, intratracheal administration of influenza virus produced a rapid inhibition of amiloride-sensitive (i.e., ENaC-dependent) lung fluid transport. Together, these results show that influenza virus rapidly inhibits ENaC in ATII cells via a PLC- and Src-mediated activation of PKC but does not increase epithelial permeability in this same rapid time course. We speculate that this rapid inhibition of ENaC and formation of edema when the virus first attaches to the alveolar epithelium might facilitate subsequent influenza infection and may exacerbate influenza-mediated alveolar flooding that can lead to acute respiratory failure and death.  相似文献   

10.
Summary Incubation of HeLa cells with Encephalomyocarditis virus (EMC) induces permeability of the cell membrane to protein toxins, such as alpha sarcin. To induce permeability to this toxin only 5 min incubation of cells with virus is needed. On the other hand, less than 1 min exposure of the susceptible cells to alpha sarcin produces maximal inhibition of protein synthesis. EMC virus treated with UV-light, although unable to replicate, can still induce the entrance of alpha sarcin into HeLa cells, but the virion loses this capacity after heating at 60 °C for 10 min. These findings suggest that an integral viral genome is not necessary to make the cells permeable to alpha sarcin, and that a virion protein might be involved in this phenomenon. Although human interferon prevents productive EMC infection, it does not affect the virus-induced entrance of alpha sarcin into the cells. The plasma membrane of cells that have been treated with virion particles can recover its initial lack of permeability to alpha sarcin after 2 h at 37 °C. Poliovirus modifies membrane permeability in human HeLa cells, but it has no effect on mouse L cells. This fact suggests that viral attachment to specific cell surface receptors is necessary to induce permeability, since receptors to poliovirus are only present in primate cells.  相似文献   

11.
Previous studies with mammalian cultured cells have shown that volume regulation in hypotonic medium requires active Na transport. In the present study, determinations of intracellular Na and K content were made in cultured mouse lymphoblasts during the process of swelling and subsequent shrinking (volume regulation) in hypotonic medium. Na and K content were measured in cells in which the shrinking phase was inhibited by the cardiac glycoside, ouabain. In osmotically-shocked cells, an initial permeability increase to K, and not Na, was observed, which allowed K to diffuse out rapidly, down its gradient. Na, meanwhile, rapidly flowed inward with water entry during the swelling process, and was later lost with the same kinetics as the cell shrinkage. This loss of Na was prevented in the presence of ouabain. The results imply that volume regulation is achieved by pumping Na gained during swelling out of the cells, while any K taken up by the pump is rapidly lost through a more permeable membrane. The loss of osmotically active Na, presumably with accompanying anions, allows water to passively diffuse down its osmotic gradient, reducing cell volume subsequent to the initial passive swelling, during which K was rapidly lost.  相似文献   

12.
The effect of pediocin JD, a bacteriocin produced by Pediococcus acidilactici JD1-23, on the proton motive force and proton permeability of resting whole cells of Listeria monocytogenes Scott A was determined. Control cells, treated with trypsin-inactivated bacteriocin at a pH of 5.3 to 6.1, maintained a pH gradient and a membrane potential of approximately 0.65 pH unit and 75 mV, respectively. However, these gradients were rapidly dissipated in cells after exposure to pediocin JD, even though no cell lysis had occurred. The pH gradient and membrane potential of the producer cells were also unaffected by the bacteriocin. Whole cells treated with bacteriocin were twice as permeable to protons as control cells were. The results suggest that the inhibitory action of pediocin JD against L. monocytogenes is directed at the cytoplasmic membrane and that inhibition of L. monocytogenes may be caused by the collapse of one or both of the individual components of the proton motive force.  相似文献   

13.
The effect of pediocin JD, a bacteriocin produced by Pediococcus acidilactici JD1-23, on the proton motive force and proton permeability of resting whole cells of Listeria monocytogenes Scott A was determined. Control cells, treated with trypsin-inactivated bacteriocin at a pH of 5.3 to 6.1, maintained a pH gradient and a membrane potential of approximately 0.65 pH unit and 75 mV, respectively. However, these gradients were rapidly dissipated in cells after exposure to pediocin JD, even though no cell lysis had occurred. The pH gradient and membrane potential of the producer cells were also unaffected by the bacteriocin. Whole cells treated with bacteriocin were twice as permeable to protons as control cells were. The results suggest that the inhibitory action of pediocin JD against L. monocytogenes is directed at the cytoplasmic membrane and that inhibition of L. monocytogenes may be caused by the collapse of one or both of the individual components of the proton motive force.  相似文献   

14.
The S gene of bacteriophage lambda is a late gene required for cell lysis, but unlike the other two lysis genes, R and Rz, it does not code for an endolysin. Earlier studies have shown that the S gene product inhibits respiration and macromolecular synthesis and makes the inner membrane permeable to sucrose. In this study, the effect of the S gene product on a number of Escherichia coli membrane functions (active transport, permeability, respiration, and transhydrogenase and ATPase activity) were measured, and a product of the lambda S gene was identified in the inner membrane fraction by two-dimensional polyacrylamide gel electrophoresis. The results of these experiments indicate that the lambda S product is present in the inner membrane, that it increased the permeability of the membrane for all of the small molecules that were tested, and that its action is reversible. The simplest explanation of these results is that the S gene product forms a hydrophilic pore through the inner membrane, allowing small molecules and lambda lysozyme to pass through.  相似文献   

15.
Intact cells of actinomycin-permeable mutants of Escherichia coli could be infected with urea-disrupted phage T4 (designated as T4pi). The parental strains and the revertants, which are impermeable to actinomycin, were not susceptible to T4pi unless they had been treated with agents which altered their permeability. The permeable mutants developed competence for pi infection during the growth cycle; cells in the early stationary phase produced 10- to 100-fold more plaques on plating with T4pi than did exponentially growing cells. Colistin (polymyxin E) was effective in converting noncompetent cells of either permeable or nonpermeable strains to the competent state. Treatment with lysozyme resulted in a considerable increase in susceptibility to T4pi of permeable mutants but not of nonpermeable cells. It appears that development of competence for pi infection is mainly due to alterations in the permeability barriers of the cell.  相似文献   

16.
There is great interest in the identification of synthetic molecules that are capable of manipulating protein-protein interactions in living cells. Peptides, unlike other classes of small molecules, have binding properties appropriate for this application, but most are poorly cell permeable and sensitive to proteases. Therefore, considerable effort has been expended in the development of libraries of oligomeric peptide-like molecules. However, there are no clear-cut rules to guide the design of libraries rich in cell permeable compounds. Furthermore, currently available empirical methods to assess permeability may not accurately reflect true permeability and/or are capable of only modest throughput. We describe here an assay for assessing the relative cell permeability of synthetic molecules in the context of steroid fusions that is capable of high throughput and can be used in any transfectable cell line.  相似文献   

17.
The apoplasmic permeability of ectomycorrhizal roots of intact Eucalyptus pilularis seedlings infected with Pisolithus tinctorius on aseptic agar plates was examined using the nonbinding fluorochrome 8-hydroxypyrene-1,3,6-trisulphonate and lanthanum ions in conjunction with anhydrous freeze substitution and dry sectioning. Most mycorrhizas formed in the air above the agar surface, and in these the sheath rapidly became nonwettable and impermeable to the fluorochrome but was nevertheless permeable to lanthanum ions. In a few mycorrhizas which developed in contact with the agar the sheath remained permeable to both tracers when fully developed. This increased hydrophobicity of the sheath in mycorrhizas in the air above the agar surface might be explained by deposition of hydrophobins, but nevertheless it still allows an apoplasmic pathway for radial movement of ions. Regardless of their sheath permeation both apoplasmic tracers were always found throughout the Hartig net and were arrested at the Casparian bands and suberin lamellae of the exodermis. It is concluded that the fluorochrome must have moved longitudinally along the Hartig net which is a region of higher permeability than the sheath. Casparian bands in the exodermis of ectomycorrhizal roots have similar properties to those in nonmycorrhizal roots in excluding solutes and their exclusion of lanthanum ions indicates that they are not permeable to ions. The data do not support the concept of a totally sealed apoplasmic exchange compartment, but the differential permeability suggests that the sheath might allow radial transfer of ions but block loss of sugars and organic molecules of similar size.  相似文献   

18.
Stallion spermatozoa exhibit osmotic damage during the cryopreservation process. Recent studies have shown that the addition of cholesterol to spermatozoal membranes increases the cryosurvival of bull, ram and stallion spermatozoa, but the exact mechanism by which added cholesterol improves cryosurvival is not understood. The objectives of this study were to determine if adding cholesterol to stallion sperm membranes alters the osmotic tolerance limits and membrane permeability characteristics of the spermatozoa. In experiment one, stallion spermatozoa were treated with cholesterol-loaded cyclodextrin (CLC), subjected to anisotonic solutions and spermatozoal motility analyzed. The spermatozoa were then returned to isotonic conditions and the percentages of motile spermatozoa again determined. CLC treatment increased the osmotic tolerance limit of stallion spermatozoa in anisotonic solutions and when returned to isotonic conditions. The second and third experiments utilized an electronic particle counter to determine the plasma membrane characteristics of stallion spermatozoa. In experiment two, stallion spermatozoa were determined to behave as linear osmometers. In experiment three, spermatozoa were treated with CLC, incubated with different cryoprotectants (glycerol, ethylene glycol or dimethyl formamide) and their volume excursions measured during cryoprotectant removal at 5° and 22 °C. Stallion spermatozoa were less permeable to the cryoprotectants at 5 °C than 22 °C. Glycerol was the least permeable cryoprotectant in control cells. The addition of CLC’s to spermatozoa increased the permeability of stallion spermatozoa to the cryoprotectants. Therefore, adding cholesterol to spermatozoal membranes reduces the amount of osmotic stress endured by stallion spermatozoa during cryopreservation.  相似文献   

19.
Using low-light digitized video microscopy, the onset, progression, and reversibility of anoxic injury were assessed in single hepatocytes isolated from fasted rats. Cell-surface bleb formation occurred in three stages over 1-3 h after anoxia. Stage I was characterized by formation of numerous small blebs. In stage II, small blebs enlarged by coalescence and fusion to form a few large terminal blebs. Near the end of stage II, cells began to swell rapidly, ending with the apparent breakdown of one of the terminal blebs. Breakdown of the bleb membrane initiated stage III of injury and was coincident with a rapid increase of nonspecific permeability to organic cationic and anionic molecules. On reoxygenation, stages I and II were fully reversible, and plasma membrane blebs were resorbed completely within 6 min of reoxygenation without loss of viability. Stage III, however, was not reversible, and no morphological changes occurred on reoxygenation. The results indicate that onset of cell death owing to anoxia is a rapid event initiated by a sudden increase of nonspecific plasma membrane permeability caused by rupture of a terminal bleb. Anoxic injury is reversible until this event occurs.  相似文献   

20.
The permeability barrier of nuclear pore complexes (NPCs) controls all nucleo‐cytoplasmic exchange. It is freely permeable for small molecules. Objects larger than ≈30 kDa can efficiently cross this barrier only when bound to nuclear transport receptors (NTRs) that confer translocation‐promoting properties. We had shown earlier that the permeability barrier can be reconstituted in the form of a saturated FG/FxFG repeat hydrogel. We now show that GLFG repeats, the other major FG repeat type, can also form highly selective hydrogels. While supporting massive, reversible importin‐mediated cargo influx, FG/FxFG, GLFG or mixed hydrogels remained firm barriers towards inert objects that lacked nuclear transport signals. This indicates that FG hydrogels immediately reseal behind a translocating species and thus possess ‘self‐healing’ properties. NTRs not only left the barrier intact, they even tightened it against passive influx, pointing to a role for NTRs in establishing and maintaining the permeability barrier of NPCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号