共查询到20条相似文献,搜索用时 62 毫秒
1.
三维激光扫描技术在骨骼形态学研究中得到越来越广泛的应用。运用激光扫描可得到骨骼三维几何形态学的全部信息,用于骨骼形态的定量分析,对于建立客观的分类指标以及形态生态学研究有重要意义。本研究以大熊猫、亚洲黑熊、棕熊和北极熊为研究对象,为亚洲黑熊、棕熊和北极熊的共计28件头骨和对应下颌建立三维模型,提取熊类下颌的9个形态测量的比例指标和头骨的15个形态测量的比例指标,对下颌和头骨进行数学建模。使用Weka的J48算法,构建决策树,成功实现了模式分类。又在上述三维模型的基础上,确定了23个下颌形态标志点和29个头骨形态标志点;以标志点的三维坐标为初始变量,进行主成分分析,比较4种熊类的下颌和头骨形态差异。结果显示大熊猫的下颌和头骨形态与其他3类熊差别显著;棕熊的头骨和下颌形态介于黑熊和北极熊之间。在此基础上,以同样方法将一例大熊猫小种化石头骨与4种现生熊类头骨形态进行比较,结果显示大熊猫小种头骨形态与现生大熊猫相似,而又不在其种内差异的形态区间内。除去大小因素,大熊猫小种在头骨形态上与现生大熊猫仍有一定差异,略倾向于杂食熊类。 相似文献
2.
几何形态学方法及其在动物发育与系统进化研究中的应用 总被引:5,自引:0,他引:5
简要回顾了几何形态学的发展历史,介绍了30多年来该领域使用的主要方法及其在生物发育与进化研究中的实际应用。除目前应用最为广泛的标点法和轮廓线法外,基于三维数据的表面特征分析和有限元分析也在该领域得到推广。这些方法可运用于分析两性分化、异速生长、种群分化、种上进化以及复杂功能结构的形态集成等科学问题。几何形态学与生物信息学的综合运用还将有利于探讨表型变化与遗传物质变化的相关性。随着生物成像技术和海量数据计算技术的进步,几何形态学将由目前以二维数据为主的研究向三维重建和分析的方向发展。 相似文献
3.
几何形态测量方法是生物学研究中用于形态特征分析和形态比较研究的一种常用方法。其核心思想是利用空间坐标点获取研究对象的形态数据,再通过坐标数据的多元统计分析,定量探讨研究对象的形态特征及影响其形态变异的因素。近年来,随着三维扫描技术的广泛应用以及对于石制品形态特征量化分析要求的提高,基于三维模型的几何形态测量方法开始出现在相关的旧石器考古研究中。本文首先对三维几何形态测量分析方法及其在石制品研究中的应用情况进行介绍,随后具体阐述了该方法的分析流程。为便于国内学者更好地了解这一方法,本文进一步以广西百色盆地南坡山遗址发现的手斧为例,利用三维几何形态测量方法对这些手斧的几何形态特征进行了初步探讨。三维几何形态测量方法为石制品形态研究提供了新思路和新视角,有望成为今后中国旧石器考古研究中一个重要的发展方向。 相似文献
4.
生物三维打印的研究进展 总被引:1,自引:0,他引:1
三维(3D)打印具有灵活性和精密性的特点,已在军工、航天等制造行业中发挥重要作用.随之兴起的生物3D打印在再生医学领域同样具有广泛的应用前景.生物3D打印是将打印的墨水改成含有活细胞的混合物,从而构建活体组织器官.目前生物3D打印更多的是应用于硬组织的仿生重建和新型给药装置的制备,但具有生物活性、更复杂的组织器官的重建还处于探索阶段.本文主要对3D打印在生物医学上的应用进行综述,讨论生物3D打印目前面临的问题,并探讨生物3D打印的未来发展方向. 相似文献
5.
几何形态测量法在生物形态学研究中的应用 总被引:8,自引:0,他引:8
形态分析是生物系统学及其多样性研究中很重要的一部分。随着统计学的发展,我们可以对非常复杂的数据进行分析,这在客观上导致了多变量形态测量的出现。在20世纪80年代,在数据收集和分析上产生了重要突破——标点和标点相对位置的几何信息的匹配,从而可以将多变量分析的标点集叠加到生物原始图上,它不仅仅是生成散点图,而是试图客观反映生物的形态性状。这项研究被称为几何形态测量法(geometricmorphometrics),Rohlf和Marcus(1993)称其为形态测量方法上的一次革命。文章简要介绍了该方法。 相似文献
6.
柯壮 Osagie Obamwonyi Boris Kolvenbach 季荣 刘双江 蒋建东 Philippe F.-X. Corvini 《生物工程学报》2021,37(10):3475-3486
排放到环境中的各种农药、多环芳烃、卤代芳烃等有机污染物以及阻燃剂等新兴污染物,对环境污染、农产品质量和环境安全造成了沉重负担。因此,有效去除环境中的有机污染物已成为迫在眉睫的挑战。3D生物打印技术已经在医学材料、制药等行业中发挥着重要作用。现在,越来越多的微生物被确定适合通过3D生物打印生产具有复杂结构和功能的生物材料。微生物的3D生物打印越来越受到环境微生物学家和生物技术专家的关注。本文综述了用于污染物微生物去除的不同3D生物打印技术的原理和优缺点,及用于微生物生物修复技术的可行性,并指出了可能遇到的限制和挑战。 相似文献
7.
【目的】甲虫的后胸叉骨是基部位于后足基节关节处,端部游离在胸腔内的几丁质构成的内骨骼。后胸叉骨作为胸腹部运动肌肉的联结点,在甲虫运动过程中扮演了重要角色,同时也承载了分类和系统发育信息。蜣螂根据其习性可分为滚粪球和直接掘洞两类行为类型。通过传统的比较形态学方法,我们无法得知滚粪球或直接掘洞的行为对后胸叉骨形态的影响。本研究旨在利用定量的几何形态学方法探究蜣螂后胸叉骨形态对不同行为选择压力的响应关系。【方法】对76种蜣螂后胸叉骨的形态多样性进行二维几何形态学定量评估;利用显微CT和计算机三维重建方法,对直接掘洞类蜣螂和滚粪球类蜣螂的代表种西班牙粪蜣螂Copris hispanus和忠诚泽蜣螂Kheper devotus的后胸叉骨进行三维重建,用于比较两者的三维形态差异。【结果】经过几何形态学分析可知,两类蜣螂后胸叉骨背面观和侧面观的马氏距离和普氏距离的p值均低于0.0001,表明两类蜣螂的后胸叉骨的形态存在显著性差异;通过对C.hispanus和K.devotus后胸叉骨3D模型的比较发现,两类蜣螂后胸叉骨的最大区别在于后胸叉骨的端半部(叉臂和中突)。前者的叉臂细长,中突面积大,背立脊呈窄条状且不发达;后者的叉臂宽扁,叉臂基半部十分宽大,中突面积小,背立脊呈鳍状且十分发达。【结论】滚粪球或直接掘洞的行为会对蜣螂后胸叉骨的形态有显著性影响,蜣螂后胸叉骨形态与滚粪球和直接掘洞两种行为的选择压力显著相关,这与后胸叉骨所附着的胸部肌肉参与相关运动关系密切。本研究为探索昆虫形态与功能关系提供了一个有益范例。 相似文献
8.
Logistic回归模型及其在昆虫学中的应用 总被引:4,自引:0,他引:4
介绍了应用Logistic回归分析对二值反应的试验数据进行分析的方法 ,以及Logistic回归分析模型参数估计及其统计检验的方法 ,并结合 1个实际例子说明了Logistic回归模型的应用。 相似文献
9.
作为技术工具的运用和创新教育模式的有益尝试,3D打印技术可深度融合应用于初中生物学教学中。从2个小案例入手,通过设计打印生物的细胞、器官的分层立体结构而非单纯外观模型,在教学展示中,方便反复拆装、立体呈现,能使学生很形象地了解生物的细胞、器官的基本结构,有利于学生对概念的掌握,提高了教学效果。 相似文献
10.
目的 了解医院骨科医师和管理者对3D打印技术在骨科应用的安全性、有效性、经济性和伦理性的感知。方法 对上海市4所三级综合性医院的所有骨科临床医师和相关管理部门的负责人或管理者进行问卷调查,并邀请4名骨科专家进行定性访谈。结果 3所被调查医院在骨科领域应用了3D打印技术,但使用量有限。被调查的医师和管理者认为:骨科3D打印主要优点是手术时间短、增加手术便利性和手术成功率高,主要缺点是费用高且价格昂贵、缺乏相关规范标准和整个过程相对复杂且耗时长。结论 3D打印技术在骨科临床应用的安全性和有效性需长期评价,骨科3D打印技术的临床应用需要规制。 相似文献
11.
Gabrielle A. Russo 《American journal of physical anthropology》2010,142(4):600-612
Two contrasting patterns of lumbar vertebral morphology generally characterize anthropoids. “Long‐backed” monkeys are distinguished from “short‐backed” apes [Benton: The baboon in medical research, Vol. 2 (1967:201)] with respect to several vertebral features thought to afford greater spinal flexibility in the former and spinal rigidity in the latter. Yet, discussions of spinal mobility are lacking important functional insight that can be gained by analysis of the zygapophyses, the spine's synovial joints responsible for allowing and resisting intervertebral movements. Here, prezygapophyseal articular facet (PAF) shape in the thoracolumbar spine of Papio, Hylobates, Pongo, Gorilla, and Pan is evaluated in the context of the “long‐backed” versus “short‐backed” model. A three‐dimensional geometric morphometric approach is used to examine how PAF shape changes along the thoracolumbar vertebral column of each taxon and how PAF shape varies across taxa at corresponding vertebral levels. The thoracolumbar transition in PAF shape differs between Papio and the hominoids, between Hylobates and the great apes, and to a lesser extent, among great apes. At the level of the first lumbar vertebra, the PAF shape of Papio is distinguished from that of hominoids. At the level of the second lumbar vertebra, there is variation to some extent among all taxa. These findings suggest that morphological and functional distinctions in primate vertebral anatomy may be more complex than suggested by a “long‐backed” versus “short‐backed” dichotomy. Am J Phys Anthropol 142:600–612, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
12.
Maïtena Dumont Christine E. Wall Léo Botton‐Divet Anjali Goswami Stéphane Peigné Anne‐Claire Fabre 《Biological journal of the Linnean Society. Linnean Society of London》2016,117(4):858-878
A major goal of evolutionary studies is to better understand how complex morphologies are related to the different functions and behaviours in which they are involved. For example, during locomotion and hunting behaviour, the head and the eyes have to stay at an appropriate level in order to reliably judge distance as well as to provide postural information. The morphology and orientation of the orbits and cranial base will have an impact on eye orientation. Consequently, variation in orbital and cranial base morphology is expected to be correlated with aspects of an animal's lifestyle. In this study, we investigate whether the shape of the skull evolves in response to the functional demands imposed by ecology and behaviour using geometric morphometric methods. We test if locomotor habitats, diet, and activity pattern influence the shape of the skull in musteloid carnivorans using (M)ANOVAs and phylogenetic (M)ANOVAs, and explore the functional correlates of morphological features in relation to locomotor habitats, diet, and activity pattern. Our results show that phylogeny, locomotion and, diet strongly influence the shape of the skull, whereas the activity pattern seems to have a weakest influence. We also show that the locomotor environment is highly integrated with foraging and feeding, which can lead to similar selective pressures and drive the evolution of skull shape in the same direction. Finally, we show similar responses to functional demands in musteloids, a super family of close related species, as are typically observed across all mammals suggesting the pervasiveness of these functional demands. 相似文献
13.
Annalisa Pietrobelli;Rita Sorrentino;Stefano Benazzi;Maria Giovanna Belcastro;Damiano Marchi; 《American journal of physical anthropology》2024,184(2):e24696
We perform a comparative assessment of shape variation of the proximal fibula in extant humans and great apes, intending to investigate the possible link between proximal fibular shape and locomotor patterns. 相似文献
14.
Haley Horbaly Mark Hubbe Adam D. Sylvester Dawnie Wolfe Steadman Benjamin M. Auerbach 《American journal of physical anthropology》2023,182(3):388-400
Objectives
Synovial joints in human limbs strike a balance between mobility, stability, and articular fit, yet little is known about how these conflicting demands pattern intraspecific variation in articular shape. In this study, we use geometric morphometrics to establish the apportionment and magnitude of morphological variance of the articular surfaces of the human shoulder, elbow, hip, and knee. We hypothesize that variances will be comparable between articulating surfaces within a joint and will be larger in joints with smaller ranges of motion, given their plurality of functional demands.Materials and Methods
Three-dimensional landmarks were taken on the articular surfaces of the glenohumeral, humeroulnar, acetabulofemoral, and tibiofemoral joints from CT scans of 200 skeletons from the University of Tennessee Donated Skeletal Collection (84 females, 116 males). Root mean-squared distances between articulations calculated from Procrustes shape coordinates were used to determine variance distributions.Results
We found no difference in variances for each articular surface between the sexes or between left and right articular surfaces. A high range of motion is associated with greater morphological variance; however, this pattern is largely driven by the concave articular surfaces of each joint, which consistently exhibit statistically greater variance than their convex counterparts.Discussion
The striking pattern of differential variance between articulating morphologies points to potential disparities in development between them. Consistently higher variance in concave surfaces may relate to chondral modeling theory for the formation of joints. Establishing intraspecific morphological variance patterns is a first step in understanding coordinated evolution among articular features. 相似文献15.
Sara Rolfe Christopher Davis A. Murat Maga 《American journal of physical anthropology》2021,175(1):227-237
16.
Haley Horbaly 《American journal of physical anthropology》2023,182(3):401-411
Objectives
Limb synovial joints exhibit complex shapes that must accommodate often-antagonistic demands of function, mobility, and stability. These demands presumably dictate coordination among joint articular shapes, but the structure of morphological covariance within and among joints is unknown. This study analyzes the human shoulder, elbow, hip, and knee to determine how articular covariance is structured in relation to joint structure, accessory cartilage, and function.Materials and Methods
Surface models were created from the CT scans of 200 modern skeletons from the University of Tennessee Donated Skeletal Collection. Three-dimensional landmarks were collected on the shoulder, elbow, hip, and knee joints. Two-block partial least squares were conducted to determine associations between surfaces of conarticular shapes, functionally analogous articulations, and articulations belonging to the same bone.Results
Except for the components of the shoulder, all conarticular pairs exhibit covariance, though the strength of these relationships appears unrelated to the amount of accessory cartilage in the joint. Only the analogous articulations of the humerus and femur exhibit significant covariance, but it is unlikely that this pattern is due to function alone. Stronger covariance within the lower limb than the upper limb is consistent broader primate patterns of within-limb integration.Discussion
With the exception of the elbow, complementary joint function does not appear to promote strong covariance between articulations. Analogous humeral and femoral surfaces are also serially homologous, which may result in the articular associations observed between these bones. Broadly, these patterns highlight the indirect relationship between joint congruence and covariance.17.
The scapula of the ecomorphologically diverse South American caviomorph rodents was studied through geometric morphometric techniques, using landmarks and semilandmarks to capture the shape of this complex morphological structure. Representatives of 33 species from all caviomorph superfamilies, as well as Hystrix cristata for comparisons, were analyzed. Marked differences in scapular shape were found among the major caviomorph lineages analyzed, particularly in the shape and length of the scapular spine and development of the great scapular notch. Shape differences were not influenced by body size, and only partially influenced by locomotor mode. Thus, at this scale of analysis, phylogenetic history seems to be the strongest factor influencing scapular shape. The scapular shape of erethizontids, chinchillids and Cuniculus paca could represent the less specialized state with respect to the highly differentiated scapula of octodontoids and most cavioids. In this sense, the characteristic scapular morphologies of octodontoids and cavioids could reflect particular functional capabilities and constraints associated with the evolution of prevalent locomotor modes within each lineage. 相似文献
18.
本文采用几何形态测量法对中国大蹄蝠9个不同地理种群头骨形态变化进行研究。结果表明,不同地理种群的头骨大小及形状存在显著差异,其中云南思茅种群与海南陵水种群差异最大。回归分析表明头骨形态的地理变化与气候因素相关。随着年均温度、年均湿度的升高以及年均降水量的增多,大蹄蝠头骨变小,上颌、齿、咬肌附着部分以及耳蜗部分的形状发生变化。此外,头骨大小与海拔高度呈正相关,头骨形状变化与纬度显著相关。本研究表明对栖息地生态条件的适应是中国大蹄蝠头骨形态地理变化的重要原因。 相似文献
19.
In the present study, postnatal ontogenetic size and shape changes in the cranium of two lagomorph species, the plateau pika(Ochotona curzoniae) and woolly hare(Lepus oiostolus), were investigated by geometric morphometrics. The ontogenetic size and shape changes of their cranium exhibited different growth patterns in response to similar environmental pressures on the Qinghai-Tibetan Plateau. The overall size change in the cranium of the plateau pika was slower than that of the woolly hare. The percentage of ontogenetic shape variance explained by size in the woolly hare was greater than that in the plateau pika. The overall shape of the cranium was narrowed in both species, and morphological components in relation to neural maturity showed negative allometry, while those responsible for muscular development showed isometric or positive allometry. The most remarkable shape variations in the plateau pika were associated with food acquisition(temporalis development), though other remarkable shape variations in the incisive and palatal foramen in the ventral view were also observed. The most important shape change in the woolly hare was demonstrated by the elongation of the nasal bones, expansion of the supra-orbital process and shape variation of the neurocranium. 相似文献
20.
The phenotype is a product of its phylogenetic history and its recent adaptation to local environments, but the relative importance of the two factors is controversial. We assessed the effects of diet, habitat, elevation, temperature, precipitation, body size, and mtDNA genetic divergence on shape variation in skulls, mandibles, and molars, structures that differ in their genetic and functional control. We asked whether these structures have adapted to environment to the same extent and whether they retain the same amount of phylogenetic signal. We studied these traits in intra- and interspecific populations of Eurasian marmots whose last common ancestor lived 2-5 million years ago. Path Analysis revealed that body size explained 10% of variation in skulls, 7% in mandibles, and 15% in molars. Local vegetation explained 7% of variation in skulls, 11% in mandibles, and 12% in molars. Dietary category explained 25% of variation in skulls, 11% in mandibles, and 9% in molars. Cyt b mtDNA divergence (phylogeny) explained 15% of variation in skulls, 7% in mandibles, and 5% in molars. Despite the percentages of phylogenetic variance, maximum-likelihood trees based on molar and skull shape recovered most phylogenetic groupings correctly, but mandible shape did not. The good performance of molars and skulls was probably due to different factors. Skulls are genetically and functionally more complicated than teeth, and they had more mathematically independent components of variation (5-6-in skulls compared to 3-in molars). The high proportion of diet-related variance was not enough to mask the phylogenetic signal. Molars had fewer independent components, but they also have less ecophenotypic variation and evolve more slowly, giving each component a proportionally stronger phylogenetic signal. Molars require larger samples for each operational taxonomic unit than the other structures because the proportion of within-taxon to between-taxon variation was higher. Good phylogenetic signal in quantitative skeletal morphology is likely to be found only when the taxa have a common ancestry no older than hundreds of thousands or millions of years (1% to 10% mtDNA divergence)--under these conditions skulls and molars provide stronger signal than mandibles. 相似文献