首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 256 毫秒
1.
Glucocorticoids induce several phenotypic changes in rat hepatoma cells in tissue culture, including the inhibition of plasminogen activator activity. Variant cell lines resistant to dexamethasone inhibition of plasminogen activator activity have been isolated using an agar-fibrin overlay technique to identify colonies with fibrinolytic (plasminogen activator) activity. The variants are resistant to concentrations of dexamethasone 1,000 times that necessary to completely inhibit plasminogen activator activity in wild-type cells. The variant phenotype has been inherited in a stable manner for more than 300 generations in continuous culture in the absence of dexamethasone. These variants are unique in that the resistance is not secondary to defective or absent glucocorticoid receptors but is due to a lesion specific for regulation of plasminogen activator. Fluctuation analyses support the hypothesis that resistance to dexamethasone arises randomly and is not induced by dexamethasone. Because HTC cells are heteroploid and karyotypically highly variable, variants are thought to arise primarily by chromosomal segregation events. These variants provide a valuable tool for studying the mechanism of hormonal regulation of plasminogen activator as well as the role of proteases in hormonal regulation of membrane functions.  相似文献   

2.
The secretory glycoproteins synthesized by hepatoma tissue culture (HTC) cells were resolved by two-dimensional polyacrylamide gel electrophoresis of media from cells that were grown in the presence of [(3)H]fucose. These cells synthesize and secrete a complex set of fucose-containing glycoproteins. These secretory glycoproteins are distinct from those glycoproteins present in the plasma membrane of HTC cells. Incubation of HTC cells with dexamethasone has a pronounced effect on the quality and quantity (denoted here as the program) of secretory protein synthesis, as assayed by the short-term incorporation of labeled mannose, fucose, or methionine. The synthesis of two mannose- and fucose- containing glycoprotein series, one of 50,000 mol wt and a more heterogeneous series with mol wt of 35,000-50,000, is increased to a high level by the hormone; conversely, the synthesis of other secretory proteins, particularly one with mol wt of 70,000, is decreased or stopped completely. The synthesis of some major secretory proteins is not affected by the hormone. Dexamethasone has less of an effect on the composition of either total cell membrane glycoprotein or plasma membrane glycoprotein. But there is a decrease in the synthesis of a major membrane glycoprotein series with mol wt of 140,000. These effects of dexamethasone are relatively specific to HTC cells. Neither Reuber H-35 cells nor primary cultures of rat hepatocytes show the same response to the steroid. Two variant HTC cell lines, which were selected for their resistance to dexamethasone inhibition of extracellular plasminogen activator activity, respond only partially to the steroid-induced regulation of the secretory and membrane glycoproteins.  相似文献   

3.
HTC rat hepatoma cells synthesize and secrete both tissue-type plasminogen activator (tPA) and type 1 plasminogen activator-inhibitor (PAI-1). Incubation with the synthetic glucocorticoid dexamethasone causes a rapid decrease in tPA activity which is secondary to a 5-fold increase in PAI-1 antigen and activity. Paradoxically, dexamethasone increases tPA antigen by 50%. We have analyzed HTC cell RNA by Northern and slot blot analysis, using as probes radiolabeled human PAI-1 and rat tPA cDNAs. HTC cells have a single species of PAI-1 mRNA of approximately 3.2 kilobases, which is increased 4-fold upon incubation with dexamethasone. Maximal induction occurs after 8-10 h of incubation. Half-maximal induction occurs at 5 nM dexamethasone. Dexamethasone also transiently increases the 2.8 kilobase tPA mRNA. The protein synthesis inhibitor cycloheximide does not affect accumulation of PAI-1 mRNA and does not block its induction by dexamethasone. In contrast, cycloheximide alone causes an increase in tPA mRNA, and in combination with dexamethasone, no further increase is observed. Induction of both mRNAs is prevented by actinomycin D. We conclude that the dexamethasone-induced increase in HTC cell PAI-1 activity and antigen is the result of a direct effect on accumulation of PAI-1 mRNA.  相似文献   

4.
Incubation of HTC rat hepatoma cells with the synthetic glucocorticoid dexamethasone rapidly inhibits plasminogen activator (PA) activity secondary to the induction of a specific acid-stable inhibitor of plasminogen activation (Cwikel, B. J., Barouski-Miller, P.A., Coleman, P.L., and Gelehrter, T.D. (1984) J. Biol. Chem. 259, 6847-6851). We have further characterized this inhibitor with respect to its interaction with both urokinase and tissue plasminogen activator, and its protease specificity. The HTC PA inhibitor rapidly inhibits urokinase and tissue plasminogen activator with an apparent second-order rate constant of 3-5 x 10(7) M-1 X s-1. The inhibitor forms stable covalent complexes with both urokinase and tissue plasminogen activator, with which plasmin, trypsin, and factor Xa apparently do not compete. Complex formation is saturable and requires the active site of the PA. The mass of the inhibitor-PA complex is 50,000 daltons greater than that of PA alone, consistent with an Mr for the PA inhibitor of 50,000 as demonstrated directly by reverse fibrin autography. The HTC PA inhibitor does not inhibit thrombin and differs in its kinetic and biochemical properties from protease nexin.  相似文献   

5.
Incubation of HTC rat hepatoma cells with the synthetic glucocorticoid dexamethasone rapidly inhibits plasminogen activator (PA) activity and reveals the presence of a specific PA inhibitor (PAI-1). To determine whether the hormonal inhibition of PA activity reflects a decrease in the amount of PA or an increased amount of the inhibitor, or both, we have assayed PA and PAI-1 immunologically. HTC PA was determined to be entirely of the tissue type (tPA), and both free and complexed antigen was quantified by a RIA using rabbit antirat tPA, with rat insulinoma tPA as tracer and standard. PAI-1 was quantified by a Western blot assay using rabbit anti-HTC PAI-1 antibody and purified HTC PAI-1 as standard. Under conditions in which dexamethasone inhibited PA activity by 90%, there was no decrease in the cellular content of tPA antigen. Paradoxically, dexamethasone increased tPA antigen approximately 1.5-fold. Under these same conditions, dexamethasone increased PAI-1 antigen 4- to 5-fold. We conclude that the glucocorticoid inhibition of tPA activity in HTC cells is not secondary to a decrease in the amount of tPA but is secondary to the induction of a specific PA inhibitor.  相似文献   

6.
Glucocorticoids decrease the plasminogen activator activity of rat hepatoma cells through production of an inhibitor. We have examined the dexamethasone regulation of plasminogen activator in anucleate rat hepatoma cells to investigate the role of the nucleus in the steroid regulation of this membrane-associated phenomenon. Dexamethasone did not affect either the intra- or extra-cellular plasminogen activator activity of the anucleate cells, and did not induce production of an inhibitor of plasminogen activator. Therefore, glucocorticoid regulation of plasminogen activator activity requires the presence of an intact nucleus.  相似文献   

7.
Incubation of HTC rat hepatoma cells with dexamethasone causes a rapid decrease in cellular plasminogen activator (PA) activity. Mixing experiments show the presence of an inhibitor of PA in dexamethasone-treated cells. This study investigates whether the decrease in PA activity is secondary to the induction of an inhibitor by glucocorticoids, to a decrease in the amount of PA, or to a combination of both mechanisms. PA and its inhibitor are dissociated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under non-reducing conditions, and both activities are then recovered and quantitated. HTC cells have two major forms of PA with Mr values of 110,000 and 64,000. Although PA activity in the unfractionated extracts from dexamethasone-treated cells is inhibited by 90% relative to control, there is no decrease in the total activity of sodium dodecyl sulfate-dissociated PA activity, suggesting that dexamethasone causes no decrease in the amount of the enzyme. PA inhibitor activity migrates as a single band of Mr = 50,000. The total activity of inhibitor increases in a time-dependent fashion, reaching a maximum of greater than 10 times control after a 4-6-h incubation with 0.1 microM dexamethasone. The induction of inhibitor requires both RNA and protein synthesis and shows a dependence on dexamethasone concentration identical to that for responses known to be mediated by glucocorticoid receptors. We conclude that dexamethasone inhibits PA activity by inducing the synthesis of an inhibitor rather than by decreasing the amount of PA.  相似文献   

8.
When purified murine plasminogen was added to cultures of mouse spleen B cells, active plasmin progressively appeared in the supernatants. This reaction, resulting from the specific cleavage of the plasminogen by lymphocyte plasminogen activator (LPA), was measured in a fibrinolysis assay using 125I-fibrinogen. T cells were totally ineffective; under certain conditions, they could even antagonize the B cell action. Of the various B populations studied, i.e., obtained from spleen, lymph nodes, or blood of various mouse strains, all expressed the same property of plasminogen activation, which concerned mainly medium-sized B cells. Since only slight activities were detected in extracellular or intracellular compartments, a membrane-associated proteolytic enzyme may be responsible for plasminogen activation. Submitted to a series of group-specific antiproteases, the lymphocyte plasminogen activator essentially behaved as a serine-protease, with sensitivity to diisopropyl fluorophosphate, phenyl methyl sulfonyl fluoride, and nitro phenyl guanidino benzoate. The fast renewal of the enzyme in the membrane was also demonstrated by different techniques, using modifiers of cell physiology, like cycloheximide and dexamethasone, or following the reexpression of the enzyme by the cell kinetically.  相似文献   

9.
We studied the uptake of leucine, phenylalanine, and the amino acid analog, 2-aminonorborane-2-carboxylic acid, by rat hepatoma cells in tissue culture. The uptake of these amino acids was partially mediated by a plasma membrane transport system similar to the L agency described in other cell types in that it does not require extracellular sodium and is subject to trans-stimulation. Initial rates of sodium-independent transport of these amino acids were calculated using mathematical transformations of the uptake time course curves. The glucocorticoid dexamethasone inhibits the activity of this transport system; the initial rates of sodium-independent uptake of leucine, phenylalanine, and 2-aminonorborane-2-carboxylic acid are decreased by approximately one-third (average = 30%, n = 19) after incubation of HTC cells with 0.1 microM dexamethasone. This inhibition requires at least 15 h, reaching a maximum at 24 h of exposure of the cells to the hormone. Dexamethasone has an asymmetrical effect on sodium-independent amino acid transport in that exposure of the cells to the hormone does not inhibit the rates of outflow of leucine or phenylalanine from preloaded cells into medium without sodium. Inhibition of uptake is blocked by 0.1 mM cycloheximide and 4 microM actinomycin D, indicating the need for continuous protein synthesis for dexamethasone action. Insulin, which is known to partially reverse the inhibitory effect of dexamethasone on the A amino acid transport system in HTC cells, does not alter the action of dexamethasone on the L system. Previous investigations have demonstrated inhibition by dexamethasone of at least two distinct sodium-dependent amino acid transport activities in HTC cells. The data presented here, showing inhibition by the glucocorticoid of a sodium-independent transport activity, indicate that the effect of the hormone is independent of the energy source of the amino acid transport systems affected.  相似文献   

10.
The transport of alpha-aminoisobutyric acid (AIB) by rat hepatoma tissue culture (HTC) cells is rapidly and reversibly inhibited by dexamethasone and other glucocorticoids. To investigate the role of the nucleus in the regulation of transport and to determine whether steroid hormones or steroid-receptor complexes may have direct effects on cytoplasmic or membrane functions, we have examined the regulation of transport by dexamethasone in anucleate HTC cells. Cytoplasts prepared from suspension cultures of HTC cells fully retain active transport of AIB with the same kinetic properties as intact cells. However, the uptake of AIB is not inhibited by dexamethasone or other corticosteroids. Neither is the inhibited rate of transport, manifested by cytoplasts prepared from dexamethasone-treated cells, restored to normal upon removal of the hormone. Anucleate cells exhibit specific, saturable binding of [3H]dexamethasone; however, the binding is reduced compared with that of intact cells. The nucleus is thus required for the glucocorticoid regulation of amino acid transport in HTC cells.  相似文献   

11.
12.
13.
Hormonal regulation of plasminogen activator in rat hepatoma cells   总被引:11,自引:0,他引:11  
Plasminogen activators are membrane-associated, arginine-specific serine proteases which convert the inactive plasma zymogen plasminogen to plasmin, an active, broad-spectrum serine protease. Plasmin, the major fibrinolytic enzyme in blood, also participates in a number of physiologic functions involving protein processing and tissue remodelling, and may play an important role in tumor invasion and metastasis. In HTC rat hepatoma cells in tissue culture, glucocorticoids rapidly decrease plasminogen activator (PA) activity. We have shown that this decrease is mediated by induction of a soluble inhibitor of PA activity rather than modulation of the amount of PA. The hormonally-induced inhibitor is a cellular product which specifically inhibits PA but not plasmin. We have isolated variant lines of HTC cells which are selectively resistant to the glucocorticoid inhibition of PA but retain other glucocorticoid responses. These variants lack the hormonally-induced inhibitor; PA from these variants is fully sensitive to inhibition by inhibitor from steroid-treated wild-type cells. Cyclic nucleotides dramatically stimulate PA activity in HTC cells in a time- and concentration-dependent manner. Paradoxically, glucocorticoids further enhance this stimulation. Thus glucocorticoids exert two separate and opposite effects on PA activity. The availability of glucocorticoid-resistant variant cell lines, together with the unique regulatory interactions of steroids and cyclic nucleotides, make HTC cells a useful experimental system in which to study the multihormonal regulation of plasminogen activator.  相似文献   

14.
We have surveyed the early stages in the development and differentiation of cultured mouse embryos for plasminogen activator production. This enzyme is first detectable by the sixth equivalent gestation day. Thereafter, cultured blastocysts produce plasminogen activator with a biphasic time course: in the first phase, enzyme secretion rises to a maximum at about the eighth day and then decreases; a second phase, during which more enzyme accumulates, begins somewhat later and continues to at least the fifteenth day.By fractionating the blastocyst into its constituent cell types, we have identified the trophoblast as the cells responsible for the first phase of enzyme synthesis. The pattern of enzyme production by the trophoblast is closely correlated with the invasive period of these cells in vivo and implies that plasminogen activator is involved in embryo implantation. The second phase of plasminogen activator production is due to parietal endoderm, which initiates enzyme synthesis upon differentiation from the inner cell mass. The properties of the parietal endoderm suggest that plasminogen activator may participate in the migration of these cells and/or in the metabolism of Reichert's membrane which accompanies embryo growth.These results are consistent with the concept, developed from work on other cell types, that plasminogen activator may represent a generalized mechanism for tissue remodeling and cell migration.  相似文献   

15.
Oncogenic transformation in a limited number of cell systems has been shown by others to be associated with an increased production of extracellular proteolytic activators that convert the plasma proenzyme, plasminogen, to the active protease, plasmin. In the present study, two cyclic AMP phosphodiesterase inhibitors (theophylline, papaverine) markedly depressed the production of intracellular and extracellular plasminogen activator by Chinese hamster ovary cells of the CHO-Kl line in serum-free medium. Prostaglandin E1 had a moderately similar effect on the production of only extracellular plasminogen activator. The ability to control experimentally the level of production of plasminogen activator should be of value in elucidating the possible biological role of the proteolytic action of plasmin on the surface of CHO cells, and the cell surface alterations which accompany oncogenic transformation.  相似文献   

16.
The binding characteristics of promegestone, a typical antagonist of glucocorticoid action, has been investigated. We localized [3H] promegestone in the nuclei purified from steroid-treated HTC cells but the radioactivity specifically bound to the nucleus was much lower for the antagonist than for an inducer steroid, for instance dexamethasone. We attempted to define the nature of the "nuclear" activity and found that promegestone does not bind to the perinuclear membrane but is associated with the chromatin fraction.  相似文献   

17.
In inflammatory macrophages, plasminogen activator exists in two active forms, a soluble form released into the extracellular medium and a cell-associated form. This communication describes some properties of the cellular form of plasminogen activator, in intact macrophages and in cell lysates. Cellular plasminogen activator is a membrane protein, associated with the outer face of the plasma membrane; in intact macrophages, it participates in the activation of exogenous plasminogen and, thus, has to be considered as an ectoenzyme. A plasminogen activator activity can be detected in cell lysates (macrophage monolayers lysed in 0.1% Triton X-100) only when plasmin production is followed by the use of small synthetic substrates because a soluble inhibitor, released during extraction, blocks plasmin fibrinolytic activity. In these lysates, plasminogen activator molecules exist as high molecular weight unstable complexes exhibiting a high affinity for plasminogen.  相似文献   

18.
The production of plasminogen activator activity in an auxotrophic mutant of the Chinese hamster ovary cell line was found be greatly stimulated by low concentrations of dimethyl sulfoxide. The production of both cell-associated and excreted plasminogen activator activities was stimulated maximally by dimethyl sulfoxide at a concentration of 2.5%. The stimulation of plasminogen activator activity production was found to be completely inhibited by actinomycin D and cycloheximide but not by mitomycin C, implying that new protein and RNA syntheses were required for this process. Using specific antibodies against plasminogen activator, the presence of a tissue-type plasminogen activator could only be detected in dimethyl sulfoxide treated cells. The dimethyl sulfoxide induced plasminogen activator production was observed only in a mutant auxotrophic for adenosine, glycine, and thymidine but not in wild-type cells. The ability of dimethyl sulfoxide to induce the synthesis of plasminogen activator was lost when the cells were hybridized with another complementary auxotrophic mutant. This implies that the ability of dimethyl sulfoxide to stimulate the production of plasminogen activator may be related to the auxotrophic mutation in this cell.  相似文献   

19.
M Wu  G K Arimura  A A Yunis 《Biochemistry》1977,16(9):1908-1913
A plasminogen activator secreted by cultured human pancreatic carcinoma (Mia PaCa-2) cells has been purified to apparent homogeneity by procedures including Sepharose-L-arginine methyl ester affinity chromatography, Sephadex G-200 gel filtration, isoelectric focusing, and sodium dodecyl sulfate gel electrophoresis. The plasminogen activator shares many properties with urokinase including: molecular weight (55 000), isoelectric point (8.7), heat stability (60 degrees C, 30 min), PH stability (1.5-10), and its mode of activation of plasminogen. The intracellular enzyme is membrane bound and can be solubilized by detergent. Solubilized activator has a molecular weight similar to that of the secreted enzyme as determined by sodium dodecyl sulfate gel electrophoresis. The production of plasminogen activator by Mia PaCa-2 cells is totally inhibited by actinomycin D and cycloheximide.  相似文献   

20.
A cosmid (cos pUK0322) harboring the complete human urokinase-type plasminogen activator (u-PA) gene and Geneticin resistance as a selectable marker was isolated from a human genomic library and characterized. After transfection of cos pUK0322 into mouse L cells and selection, several plasminogen activator (PA)-expressing clones were obtained and one (LuPA) was chosen for additional study. The PA expressed was identical to human pro-u-PA in enzymatic, electrophoretic, and antigenic properties. The expression of PA was stable over 50 population doublings. The regulation of the transfected gene was studied by treatment of the cells with various hormones and other effectors. Expression of PA activity was inhibited fivefold by dexamethasone and stimulated two- to threefold by agonists of the adenylate cyclase dependent pathway of signal transduction, such as dibutyryl cyclic AMP and cholera and pertussis toxins. The modulation of PA activity was associated with corresponding changes in mRNA steady-state levels. The phenotypic changes associated with pro-u-PA expression were analyzed in vitro by degradation of 3H-labeled extracellular matrix (ECM), invasion of a matrigel basement membrane analogue, and by light and electron microscopy. LuPA cells and reference HT-1080 fibrosarcoma cells, in contrast to control Lneo cells transfected with the neomycin resistance gene, degraded the ECM and invaded the matrigel basement membrane. Matrix degradation correlated with the modulation of pro-u-PA gene expression as it was inhibited by dexamethasone and promoted by dibutyryl cyclic AMP. Inhibition of PA or plasmin using anti-u-PA IgG or aprotinin prevented ECM degradation and invasion. These results demonstrate that u-PA expression alone is sufficient to confer to a cell an experimental invasive phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号