首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.  相似文献   

2.
Mode of growth hormone action in osteoblasts   总被引:1,自引:0,他引:1  
Growth hormone (GH) affects bone size and mass in part through stimulating insulin-like growth factor type 1 (IGF-1) production in liver and bone. Whether GH acts independent of IGF-1 in bone remains unclear. To define the mode of GH action in bone, we have used a Cre/loxP system in which the type 1 IGF-1 receptor (Igf1r) has been disrupted specifically in osteoblasts in vitro and in vivo. Calvarial osteoblasts from mice homozygous for the floxed IGF-1R allele (IGF-1R(flox/flox)) were infected with adenoviral vectors expressing Cre. Disruption of IGF-1R mRNA (>90%) was accompanied by near elimination of IGF-1R protein but retention of GHR protein. GH-induced STAT5 activation was consistently greater in osteoblasts with an intact IGF-1R. Osteoblasts lacking IGF-1R retained GH-induced ERK and Akt phosphorylation and GH-stimulated IGF-1 and IGFBP-3 mRNA expression. GH-induced osteoblast proliferation was abolished by Cre-mediated disruption of the IGF-1R or co-incubation of cells with an IGF-1-neutralizing antibody. By contrast, GH inhibited apoptosis in osteoblasts lacking the IGF-1R. To examine the effects of GH on osteoblasts in vivo, mice wild type for the IGF-1R treated with GH subcutaneously for 7 days showed a doubling in the number of osteoblasts lining trabecular bone, whereas osteoblast numbers in similarly treated mice lacking the IGF-1R in osteoblasts were not significantly affected. These results indicate that although direct IGF-1R-independent actions of GH on osteoblast apoptosis can be demonstrated in vitro, IGF-1R is required for anabolic effects of GH in osteoblasts in vivo.  相似文献   

3.
4.
5.
Bone metastasis microenvironment-related growth factors such as insulin-like growth factor 1 (IGF-1), transforming growth factor beta 1 (TGF-beta1), basic fibroblast growth factor (bFGF) and interleukin 6 (IL-6) show survival factor activity, thereby inhibiting chemotherapy-induced apoptosis of PC-3 prostate cancer cells in vitro. Recently, zoledronic acid has been shown to induce apoptosis in PC-3 prostate cancer cells while overexpression of parathyroid hormone-related protein (PTHrP) inhibits serum deprivation-induced apoptosis in PC-3 cells. Consequently, we have investigated whether IGF-1, TGF-beta1, bFGF, IL-6, zoledronic acid and/or dexamethasone affect the expression of the PTHrP and type I PTH/PTHrP receptor (PTH.1R) in PC-3 prostate cancer cells using relative quantitative PCR and real-time PCR (expression at mRNA level) and immunocytochemical and immunofluorescence analysis (expression at protein level). Our data show that IGF-1, TGF-beta1, bFGF and IL-6 increase PTHrP mRNA expression and its perinuclear localization, while zoledronic acid (50 muM, 100 muM for 24 h and 48 h) and dexamethasone suppress PTHrP expression in PC-3 cells. We did not detect any appreciable change of the PTH.1R expression due to IGF-1, TGF- beta1, bFGF, IL-6, zoledronic acid or dexamethasone in PC-3 cells. Therefore, it is conceivable that bone metastasis microenvironment-related survival factor/anti-apoptotic activity and zoledronic acid anticancer action/pro-apoptotic activity on PC-3 cells is mediated, at least in part, by differential modulation of PTHrP expression.  相似文献   

6.
7.
8.
Diabetic hyperglycemia result in cardiovascular complications, but the mechanisms by which high levels of glucose (HG) cause diabetic cardiomyopathy are not known. We investigate whether HG-induced repression of insulin-like growth factor 1 receptor (IGF-1R) mediated by epigenetic modifications is one potential mechanism. We found that HG resulted in decreased IGF-1 receptor (IGF-1R) mRNA levels, and IGF-1R protein when compared with H9C2 rat cardiomyocyte cells incubated in normal glucose. HG also induced apoptosis of H9C2 cells. The effects of HG on reduced expression of IGF-1R and increased apoptosis were blocked by silencing p53 with small interference RNA but not by non-targeting scrambled siRNA. Moreover, HG negatively regulated IGF-1R promoter activity as determined by ChIP analysis, which was dependent on p53 since siRNA-p53 attenuated the effects of HG on IGF-1R promoter activity. HG also increased the association of p53 with histone deacetylase 1 (HDAC1), and decreased the association of acetylated histone-4 with the IGF-1R promoter. Furthermore, HDAC inhibitor relieved the repression of IGF-1R following HG state. These results suggest that HG-induced repression of IGF-1R is mediated by the association of p53 with the IGF-1R promoter, and by the subsequent enhanced recruitment of chromatin-modifying proteins, such as HDAC1, to the IGF-1R promoter-p53 complex. In conclusion, our data demonstrate that HG decreases expression of IGF-1R and decreases the association of acetylated histone-4 with the IGF-1R promoter. These studies may help delineate the complex pathways regulating diabetic cardiomyopathy, and have implications for the development of novel therapeutic strategies to prevent diabetic cardiomyopathy by epigenetic regulation of IGF-1R.  相似文献   

9.
The overexpression of the type 1 insulin-like growth factor receptor (IGF-1R) has been reported to be associated with malignant transformation, tumor development and chemo- or radioresistance of tumor cells. Previously, we have reported that inhibition of IGF-1R could reverse the radioresistance of human osteosarcoma cells. However, whether inhibition of IGF-1R could enhance chemosensitivity of ostesosarcoma cells is unclear. In this study, lentivirus-mediated shRNA was employed to downregulate endogenous IGF-1R expression to study the function of IGF-1R in chemoresistance of osteosarcoma cells. Results showed that lentivirus-mediated shRNA targeting IGF-1R combined with chemotherapy (CDDP or DTX) could lead to growth suppression of osteosarcoma cells not only in vitro but also in vivo. Moreover, inhibition of IGF-1R gene combined with chemotherapy also synergistically enhanced Caspase-3-mediated apoptosis of osteosarcoma cells. The synergistical enhancement of apoptosis might be associated with downregulation of Bcl-2 and upregulation of Bax in osteosarcoma cells induced by IGF-1R inhibition. Therefore, the overexpression of IGF-1R gene might play important roles in chemoresistance of osteosarcoma cells, and lentivirus-mediated RNAi targeting IGF-1R would be an attractive anti-cancer strategy to chemosensitization of osteosarcoma cell.  相似文献   

10.
本研究旨在探究生长激素(Growth hormone,GH)对贵州地方黄牛骨骼肌细胞增殖的表达调控,探明超表达GH基因对骨骼肌细胞增殖的影响.首先利用反转录PCR扩增黄牛GH基因的蛋白质编码区(Coding sequence,CDS),将其克隆至pUCM-T载体,并连接转化构建超表达载体pEGFP-N3-GH.同时使用...  相似文献   

11.
12.
Ectopic expression of the alpha5 integrin subunit in cancer cells with little or no endogenous expression of this integrin often results in reduced proliferation as well as reduced malignancy. We now show that inhibition resulting from ectopic expression of alpha5 integrin is due to induction of autocrine negative transforming growth factor-beta (TGF-beta) activity. MCF-7 breast cancer cells do not express either alpha5 integrin or type II TGF-beta receptor and hence are unable to generate TGF-beta signal transduction. Ectopic expression of alpha5integrin expression enhanced cell adhesion to fibronectin, reduced proliferation, and increased the expression of type II TGF-beta receptor mRNA and cell surface protein. Receptor expression was increased to a higher level in alpha5 transfectants by growth on fibronectin-coated plates. Induction of type II TGF-beta receptor expression also resulted in the generation of autocrine negative TGF-beta activity because colony formation was increased after TGF-beta neutralizing antibody treatment. Transient transfection with a TGF-beta promoter response element in tandem with a luciferase cDNA into cells stably transfected with alpha5 integrin resulted in basal promoter activities 5-10-fold higher than those of control cells. Moreover, when alpha5 transfectants were treated with a neutralizing antibody to either TGF-beta or integrin alpha5, this increased basal promoter activity was blocked. Autocrine TGF-beta activity also induced 3-fold higher endogenous fibronectin expression in alpha5 transfectants relative to that of control cells. Re-expression of type II receptor by alpha5 transfection also restored the ability of the cells to respond to exogenous TGF-beta and led to reduced tumor growth in athymic nude mice. Taken together, these results show for the first time that TGF-beta type II receptor expression can be controlled by alpha5beta1 ligation and integrin signal transduction. Moreover, TGF-beta and integrin signal transduction appear to cooperate in their tumor-suppressive functions.  相似文献   

13.
14.
Serum sulfate concentrations are elevated in infants, young children, and pregnant women due, at least in part, to increased renal sulfate reabsorption. Little is known about the effects of hormones, particularly those involved in growth, development, and pregnancy, on renal sulfate reabsorption. The objective of this investigation was to examine the effects of growth hormone (GH), insulin-like growth factor 1 (IGF-1), progesterone (PG), and 17beta-estradiol (EST) on renal sodium/sulfate co-transport. 35S-sulfate uptake was determined in Madin-Darby canine kidney (MDCK)/NaSi-1 cells (MDCK cells that have been stably transfected with rat sodium/sulfate co-transporter (NaSi-1) cDNA) and in opossum kidney (OK) cells. NaSi-1 mRNA was determined by RT-PCR and protein levels by ELISA. GH (0.1 nM) significantly increased the sodium/sulfate co-transport in MDCK/NaSi-1 cells up to 35%. IGF-1 induced a concentration-related stimulation of the sodium/sulfate co-transport with a maximal response observed at 1000 nM (59% increase). Sodium-dependent sulfate uptake was significantly increased when cells were preincubated with 10 nM PG, 10 nM EST, or 10 nM PG/10 nM EST up to 41%, 46%, or 39%, respectively. OK cells exhibited endogenous sodium-dependent sulfate transport; significantly increased sodium/sulfate co-transport was also observed in OK cells that were preincubated with GH, IGF-1, and PG/EST, although not with EST alone. The NaSi-1 mRNA and NaSi-1 protein levels were significantly increased in MDCK/NaSi-1 cells treated with 0.1 nM GH, 100 nM IGF-1, 10 nM PG, and/or 10 nM EST compared with control. These results suggest that the increased renal sulfate reabsorption that occurs in neonates, young and pregnant humans, and animals could be mediated by the increased steady-state levels of NaSi-1 mRNA produced by the higher plasma concentrations of GH, IGF-1, or PG/EST.  相似文献   

15.
16.
Low density lipoproteins (LDLs) play an important role in the pathogenesis of atherosclerosis. LDL has been shown to be mitogenic and proapoptotic for vascular smooth muscle cells. However, the mechanisms are poorly understood and may result from an alteration in intracellular mitogenic signaling either directly by LDL or indirectly through an autocrine effect involving growth factor secretion and/or growth factor receptor expression. Insulin-like growth factor-1 (IGF-1) is an autocrine/paracrine factor for vascular smooth muscle cells and has potent anti-apoptotic effects. Thus, we hypothesized that part of the proliferative responses to LDLs may be explained by its modulation of IGF-1 or IGF-1 receptor (IGF-1R) expression. Treatment of rat vascular smooth muscle cells with increasing doses of native LDL dose-dependently increased IGF-1 mRNA by up to 2.6-fold; however, native LDL had no effect on IGF-1R mRNA expression. In contrast, the same doses of oxidized LDL significantly reduced IGF-1 and IGF-1R mRNA by 80 and 61%, respectively, and reduced IGF-1 and IGF-1R protein expression by 63 and 46%. In addition, native and oxidized LDL significantly increased IGF-1-binding protein-2 and IGF-1-binding protein-4 expression as measured by Western ligand blot. Most interestingly, anti-IGF-1 antiserum completely inhibited LDL-induced but not serum-induced increase in (3)H-thymidine incorporation, indicating a requirement for IGF-1 in the LDL-stimulated mitogenic signaling pathway. In summary, these results suggest that native and oxidized LDLs have differential effects on IGF-1 and IGF-1R expression. Because IGF-1 is a potent survival factor for vascular smooth muscle cells, our findings suggest that moderately oxidized LDL may favor proliferation of smooth muscle cells, whereas oxidized LDL may contribute to plaque apoptosis by local depletion of IGF-1 and IGF-1R.  相似文献   

17.
The effect of methylation on rat growth hormone (rGH) promoter activity was determined in GH3 cells by measuring rGH-Neo and rGH-CAT fusion gene expression with or without prior in vitro treatment with the site-specific DNA methyltransferases, M-BsuE and M-HhaI. To assay for rGH-promoter-specific effects of DNA methylation, RSV-Neo and RSV-CAT activities with or without M-BsuE, M-HhaI and M-HpaII treatment were measured in parallel cultures of GH3 cells. GH1-Neo and RSV-Neo fusion gene expression was inhibited by in vitro methylation from 44 to 83% as measured by the number of Geneticin-resistant GH3 cell colonies. Methylation of the GH1 promoter by M-BsuE exhibited some selective inhibition of Neo expression as determined by colony numbers, although extensive methylation of non-promoter DNA in GH1-Neo and RSV-Neo by M-HhaI and M-HpaII also inhibited Neo expression. Southern blot analysis of genomic DNA isolated from the Geneticin-resistant GH3 cells indicated that Geneticin-resistance was accompanied by demethylation of the BsuE (ThaI) sites in stably incorporated GH1-Neo DNA but not RSV-Neo DNA. Transient expression of the CAT gene in GH3 cells was selectively inhibited by 60% upon methylation of two BsuE (ThaI) sites in the GH1 promoter of GH1-CAT by M-BsuE. The data demonstrate, for the first time, to our knowledge, a direct effect of DNA methylation on the activity of the rat growth hormone promoter.  相似文献   

18.
In women who are growth hormone (GH) deficient, exogenous estrogens increase the dosage of GH that is needed to normalize circulating levels of insulin-like growth factor (IGF-1). Serum IGF-1 derives mostly from the liver, and it is unknown whether the peripheral effects of GH are also impaired by estrogens. Because the ultimate effect of GH is longitudinal growth, we have investigated the influence of estrogen administration on the growth response to recombinant mouse GH therapy in prepubertal GH-deficient (GHD) GHRH knockout (GHRHKO) female mice. Twenty-four GHRHKO female mice (4 animals/group) were treated for 4 weeks (from the second to sixth week of age) with the following schedules: Group I, GH only (25 microg/day); Group II, subcutaneous (sc) ethynil estradiol (EE) (0.035 ES01247g/day); Group III, GH + scEE; Group IV, oral (po) EE (0.035 microg/day); Group V, GH + poEE; Group VI, placebo. At the end of the treatment period, we measured uterine weight, total body weight (TBW), body length (nose-anus, N-A), and femur length. In addition, serum IGF-1 levels were measured. Uteri of mice treated with oral or scEE showed similar increases in weight. There was no difference in the increase in longitudinal growth parameters between mice treated with GH alone or with GH in association with oral or scEE. Serum IGF-1 decreased in animals treated with GH + scEE, compared with GH group, but no group was significantly different from placebo. These results show that subcutaneous or oral EE does not reduce the growth response to GH in female GHD mice.  相似文献   

19.
We examined the possible involvement of mitogen-activated protein (MAP) kinase activation in the secretory process and gene expression of prolactin and growth hormone. Thyrotropin-releasing hormone (TRH) rapidly stimulated the secretion of both prolactin and growth hormone from GH3 cells. Secretion induced by TRH was not inhibited by 50 microM PD098059, but was completely inhibited by 1 microM wortmannin and 10 microM KN93, suggesting that MAP kinase does not mediate the secretory process. Stimulation of GH3 cells with TRH significantly increased the mRNA level of prolactin, whereas expression of growth hormone mRNA was largely attenuated. The increase in prolactin mRNA stimulated by TRH was inhibited by addition of PD098059, and the decrease in growth hormone mRNA was also inhibited by PD098059. Transfection of the cells with a pFC-MEKK vector (a constitutively active MAP kinase kinase kinase), significantly increased the synthesis of prolactin and decreased the synthesis of growth hormone. These data taken together indicate that MAP kinase mediates TRH-induced regulation of prolactin and growth hormone gene expression. Reporter gene assays showed that prolactin promoter activity was increased by TRH and was completely inhibited by addition of PD098059, but that the promoter activity of growth hormone was unchanged by TRH. These results suggest that TRH stimulates both prolactin and growth hormone secretion, but that the gene expressions of prolactin and growth hormone are differentially regulated by TRH and are mediated by different mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号