首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The parameters involved in the action of beta-galactosidase (EC 3.2.1.23) (Escherichia coli) on allolactose, the natural inducer of lac operon in E. coli, were studied. At low allolactose concentrations only galactose and glucose were formed, while at high allolactose concentrations transgalactolytic oligosaccharides were also produced. Detectable amounts of lactose were not formed. The V and Km values (49.6 U/mg and 0.00120 M, respectively) indicated that allolactose is as good if not a better substrate of beta-galactosidase as lactose. The pH optimum with allolactose (7.8-7.9) as well as its activation by K+ (as compared to activation by Na+) were similar to the case with lactose as substrate. The alpha-anomer of allolactose was hydrolyzed about two times as rapidly as was the beta-anomer.  相似文献   

2.
The ability of Klebsiella oxytoca NRRL-B199 to use either lactose or the mixture of glucose and galactose as substrate for the production of 2,3-butanediol was studied in batch fermentations with different conditions of aeration and pH. 2,3-butanediol was undetected, or present in minute concentration in the fermentation broths with lactose, while it was the main product from glucose+galactose with final concentrations of up to 18.8 g/l in media at pH 6.0. Under conditions optimal for 2,3-butanediol synthesis, when aeration limited growth, the rate of biomass growth was more tightly related to the aeration rate in lactose medium than in glucose+galactose medium. These relations suggest that the growth rate is very low on lactose but still considerable on glucose+galactose when aeration rate tends toward zero. Correspondingly, the metabolism is more oxidative in the former medium, yielding mainly acetate as product.Abbreviations CDW cell dry weight  相似文献   

3.
beta-Galactosidase (EC 3.2.1.32) was purified 80-fold from the yeast Kluyveromyces lactis induced for this enzyme by growth on lactose. When the purified enzyme was subjected to electrophoresis on an acrylamide gel in the presence of sodium dodecyl sulfate, one protein with an apparent molecular weight of 135,000 was observed. The enzyme has a sedimentation coefficient of 9.6S. This beta-galactosidase and the one from Escherichia coli are not antigenically related. Maximal enzyme activity requires Na+ and Mn2+ and a reducing agent. beta-Galactosidase has Km values of 12 to 17 and 1.6 mM for lactose and o-nitrophenyl-beta-D-galactoside, respectively. The hydrolase and transgalactosylase activities of the enzyme are similar to those of E. coli beta-galactosidase.  相似文献   

4.
Interactions between carbohydrates and aromatic amino-acid residues are often observed in structures of carbohydrate-protein complexes. They are characterized by an orientation of the pyranose or furanose ring parallel with the aromatic ring of amino-acid residues. An important role in the formation of these complexes is supposed to be played by CH/pi interactions. This paper presents an ab initio quantum chemistry study of CH/pi interactions between beta-galactosidase from E. coli and its substrates and products. The energy stabilizing the interaction between Trp999 residue and substrate bound in the shallow binding mode was calculated at the MP2/6-31+G(d) level as 5.2kcalmol(-1) for the glucose moiety of allolactose, 2.4kcalmol(-1) for the galactose moiety of allolactose and 5.0kcalmol(-1) for the glucose moiety of lactose. The energy stabilizing the interaction between Trp568 residue and galactose in the deep binding mode was calculated as 2.7kcalmol(-1). Interaction energies at the HF/6-31+G(d) and B3LYP/6-31+G(d) levels were small or repulsive; therefore, highly correlated ab initio methods were necessary to study these interactions. These unexpectedly strong interactions give a rationale for allolactose formation and illustrate the role of the Trp999 residue. In addition, this illustrates the importance of CH/pi interactions for the function of carbohydrate-binding proteins and carbohydrate-processing enzymes.  相似文献   

5.
Regulation of lactose (beta-D-galactosidase) synthesis in the lactose-utilizing yeast Candida pseudotropicalis was studied. The enzyme was inducible by lactose and galactose. When grown on these sugars the enzyme level of the yeast was 20 times or higher than when grown on glycerol. The Km and optimal pH were similar for the lactase induced either by lactose or galactose. The hydrolysis of o-nitrophenyl-beta-D-galactopyranoside by the lactase was inhibited by galactose and several analogs and galactosides, but not by glucose. Lactose uptake activity observed in lactose-grown cells was very reduced in cells grown on glucose or galactose. Glucose repressed the induction of lactase, but not the metabolic system for galactose utilization. In continuous culture on lactose medium at dilution rates below 0.2 h-1 the specific lactase activity was higher than in batch cultures and decreased with increases in dilution rate. Lactase was induced by pulses of lactose and galactose in cells growing on glucose, but only at low dilution rates were the steady-state concentration of glucose was very low.  相似文献   

6.
7.
A mathematical model for kefiran production by Lactobacillus kefiranofaciens was established, in which the effects of pH, substrate and product on cell growth, exopolysaccharide formation and substrate assimilation were considered. The model gave a good representation both of the formation of exopolysaccharides (which are not only attached to cells but also released into the medium) and of the time courses of the production of galactose and glucose in the medium (which are produced and consumed by the cells). Since pH and both lactose and lactic acid concentrations differently affected production and growth activity, the model included the effects of pH and the concentrations of lactose and lactic acid. Based on the mathematical model, an optimal pH profile for the maximum production of kefiran in batch culture was obtained. In this study, a simplified optimization method was developed, in which the optimal pH profile was determined at a particular final fermentation time. This was based on the principle that, at a certain time, switching from the maximum specific growth rate to the critical one (which yields the maximum specific production rate) results in maximum production. Maximum kefiran production was obtained, which was 20% higher than that obtained in the constant-pH control fermentation. A genetic algorithm (GA) was also applied to obtain the optimal pH profile; and it was found that practically the same solution was obtained using the GA.  相似文献   

8.
Previous models based on the Michaelis-Menten kinetic equation, that glucose was not used as an acceptor, did not explain our experimental data for lactose conversion by a recombinant beta-galactosidase from Kluyeromyces lactis. In order to create a new kinetic model based on the data, the effects of galactose and glucose on beta-galactosidase activity were investigated. Galactose acted as an inhibitor at low concentrations of galactose and lactose, but did not inhibit the activity of beta-galactosidase at high concentrations of galactose (above 50mM) and lactose (above 100mM). The addition of glucose at concentrations below 50mM resulted in an increased reaction rate. A new model of K. lactis beta-galactosidase for both hydrolysis and transgalactosylation reactions with glucose and lactose as acceptors was proposed. The proposed model was fitted well to the experimental data of the time-course reactions for lactose conversion by K. lactis beta-galactosidase at various concentrations of substrate.  相似文献   

9.
The role of the enzymes uridine-5'-diphospho-(UDP) glucose pyrophosphorylase and UDP galactose 4-epimerase in exopolysaccharide production of Gal ropy and non-ropy strains of Streptococcus thermophilus in a batch culture was investigated. Growth of the ropy and non-ropy strains was accompanied by total release of the galactose moiety from lactose hydrolysis in modified Bellinker broth with lactose as the only carbon source. This was associated with a greater exopolysaccharide production by the ropy strain. The polymer produced by both strains in cultures with lactose or glucose as carbon sources contained glucose, galactose and rhamnose, indicating that glucose was used as a carbon source for bacterial growth and for exopolysaccharide formation. UDP-glucose pyrophosphorylase activity was associated with polysaccharide production during the first 12 h in a 20 h culture in the ropy strain, but not in the non-ropy strain. UDP-galactose 4-epimerase was not associated with exopolysaccharide synthesis in any strain. The evidence presented suggests that the glucose moiety from lactose hydrolysis is the source of sugar for heteropolysaccharide synthesis, due to a high UDP-glucose pyrophosphorylase activity.  相似文献   

10.
《Biophysical journal》2022,121(5):808-819
The expression of the lac operon of E. coli is subject to positive feedback during growth in the presence of gratuitous inducers, but its existence in the presence of lactose remains controversial. The key question in this debate is: Do the lactose enzymes, Lac permease and β-galactosidase, promote accumulation of allolactose? If so, positive feedback exists since allolactose does stimulate synthesis of the lactose enzymes. Here, we addressed the above question by developing methods for determining the intracellular allolactose concentration as well as the kinetics of enzyme induction and dilution. We show that, during lac induction in the presence of lactose, the intracellular allolactose concentration increases with the lactose enzyme level, which implies that lactose enzymes promote allolactose accumulation, and positive feedback exists. We also show that, during lac repression in the presence of lactose + glucose, the intracellular allolactose concentration decreases with the lactose enzyme levels, which suggests that, under these conditions, the positive feedback loop turns in the reverse direction. The induction and dilution rates derived from the transient data show that the positive feedback loop is reversed due to a radical shift of the steady-state induction level. This is formally identical to the mechanism driving catabolite repression in the presence of TMG + glucose.  相似文献   

11.
Growth of galactose-adapted cells of Streptococcus lactis ML(3) in a medium containing a mixture of glucose, galactose, and lactose was characterized initially by the simultaneous metabolism of glucose and lactose. Galactose was not significantly utilized until the latter sugars had been exhausted from the medium. The addition of glucose or lactose to a culture of S. lactis ML(3) growing exponentially on galactose caused immediate inhibition of galactose utilization and an increase in growth rate, concomitant with the preferential metabolism of the added sugar. Under nongrowing conditions, cells of S. lactis ML(3) grown previously on galactose metabolized the three separate sugars equally rapidly. However, cells suspended in buffer containing a mixture of glucose plus galactose or lactose plus galactose again consumed glucose or lactose preferentially. The rate of galactose metabolism was reduced by approximately 95% in the presence of the inhibitory sugar, but the maximum rate of metabolism was resumed upon exhaustion of glucose or lactose from the system. When presented with a mixture of glucose and lactose, the resting cells metabolized both sugars simultaneously. Lactose, glucose, and a non-metabolizable glucose analog (2-deoxy-d-glucose) prevented the phosphoenolpyruvate-dependent uptake of thiomethyl-beta-d-galactopyranoside (TMG), but the accumulation of TMG, like galactose metabolism, commenced immediately upon exhaustion of the metabolizable sugars from the medium. Growth of galactose-adapted cells of the lactose-defective variant S. lactis 7962 in the triple-sugar medium was characterized by the sequential metabolism of glucose, galactose, and lactose. Growth of S. lactis ML(3) and 7962 in the triple-sugar medium occurred without apparent diauxie, and for each strain the patterns of sequential sugar metabolism under growing and nongrowing conditions were identical. Fine control of the activities of preexisting enzyme systems by catabolite inhibition may afford a satisfactory explanation for the observed sequential utilization of sugars by these two organisms.  相似文献   

12.
Fibrobacter succinogenes S85 is unable to grow with lactose as the source of carbohydrate, although it does exhibit low beta-galactosidase (EC 3.2.1.23) activity. Spontaneous mutants of strain S85 able to grow on lactose were isolated after spreading cells on a chemically defined agar medium with lactose as the carbohydrate source. A lactose-catabolizing isolate, designated L2, exhibited a sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profile and an immunoblot profile with polyclonal antibodies to whole cells of S85 which were identical to those observed for S85. Strain L2 exhibited both cell-associated and extracellular beta-galactosidase activity with either p-nitrophenyl-beta-D-galactopyranoside or lactose as the substrate. The cell-associated enzyme exhibited the greatest activity in the periplasmic space. Enzyme production was partially inhibited by glucose. The beta-galactosidase was activated by divalent cations and exhibited a pH optimum of 6.5. Analysis of the extracellular culture fluid revealed that glucose derived from the hydrolysis of lactose was used for growth, but galactose was not metabolized further. Cells were unable to take up the lactose analog, methyl-beta-D-thiogalactopyranoside. These data suggest that beta-galactosidase of F. succinogenes L2 cleaves lactose outside the cells and that the glucose released is catabolized while the galactose accumulates in the extracellular culture fluid.  相似文献   

13.
Summary Under otherwise identical fermentation conditions, the sugar source has been shown to have a marked effect on citric acid production by Aspergillus niger. Sucrose was the most favourable source, followed by glucose and fructose and then lactose. No citric acid was produced from galactose. Strong relationships were observed between citric acid production and the activities of certain enzymes in myccelial cell-free extracts prepared from fermentation samples. When sucrose, glucose, or fructose was the sugar source pyruvate carboxylase activity was high, but 2-oxoglutarate dehydrogenase activity was not detected. When galactose was the sugar source pyruvate carboxylase activity was low, but 2-oxoglutarate dehydrogenase activity was high. It is suggested that whereas glucose and fructose repress 2-oxoglutarate dehydrogenase, thereby causing accumulation of citric acid, galactose does not. The activity of aconitase showed a direct relationship to the citric acid production rate. Thus, the activity was highest when sucrose was the sugar source, and lowest when galactose was the source. It is suggested that when large amounts of citric acid are lost from the cell the activity of aconitase increases as a response to the diminished intracellular supply of its substrate.  相似文献   

14.
Microcalorimetry has been used to determine the affinity of whole cells of Escherichia coli for glucose, galactose, fructose, and lactose. Anaerobic growth thermograms were analyzed, and the Km and Vmax values for these energy substrates were measured at pH 7.8. Results obtained with this technique using various organisms growing anaerobically on different sugars are compared. This comparison shows that in practically all cases the cellular rate of catabolic activity is a hyperbolic function of the energy substrate concentrations at low sugar concentrations. In some cases this technique also allows determination of kinetics at high sugar concentrations.  相似文献   

15.
Lactase-phlorizin hydrolase is a disaccharidase present in the small intestine of mammals. This enzyme has two active sites, one being responsible for the hydrolysis of lactose. Lactase activity is thought to be selective towards glycosides with a hydrophilic aglycon. In this work, we report a systematic study on the importance of each hydroxyl group in the substrate molecule for lactase activity. For this purpose, all of the monodeoxy derivatives of methyl beta-lactoside and other lactose analogues are studied as lactase substrates. With respect to the galactose moiety, it is shown here that HO-3' and HO-2' are necessary for hydrolysis of the substrates by lactase. Using these chemically modified substrates, it has been confirmed that lactase does not behave as a typical beta-galactosidase, since it does not show an absolute selectivity with respect to substitution and stereochemistry at C4' in the galactose moiety of the substrate. However, the glucose moiety, in particular the HO-6, appears to be important for substrate hydrolysis, although none of the hydroxyl groups seemed to be essential. In order to differentiate both activities of the enzyme, a new assay for the phlorizin-hydrolase activity has also been developed.  相似文献   

16.
β-Galactosidase was isolated from the cell-free extracts ofLactobacillus crispatus strain ATCC 33820 and the effects of temperature, pH, sugars and monovalent and divalent cations on the activity of the enzyme were examined.L. crispatus produced the maximum amount of enzyme when grown in MRS medium containing galactose (as carbon source) at 37°C and pH 6.5 for 2 d, addition of glucose repressing enzyme production. Addition of lactose to the growth medium containing galactose inhibited the enzyme synthesis. The enzyme was active between 20 and 60°C and in the pH range of 4–9. However, the optimum enzyme activity was at 45°C and pH 6.5. The enzyme was stable up to 45°C when incubated at various temperatures for 15 min at pH 6.5. When the enzyme was exposed to various pH values at 45°C for 1 h, it retained the original activity over the pH range of 6.0–7.0. Presence of divalent cations, such as Fe2+ and Mn2+, in the reaction mixture increased enzyme activity, whereas Zn2+ was inhibitory. TheK m was 1.16 mmol/L for 2-nitrophenyl-β-d-galactopyranose and 14.2 mmol/L for lactose.  相似文献   

17.
利用硫酸铵分级沉淀、离子交换层析 (DEAE- 2 2 )、Sephadex G- 75凝胶过滤从嗜热脂肪芽孢杆菌胞内提纯得到 β-半乳糖苷酶。研究表明 ,该酶最适表观反应温度和最适 pH分别为 6 0℃和 6 .4。在 50℃该酶具有良好的热稳定性。碱金属和碱土金属盐对酶有激活作用 ,重金属 Zn2+、Fe3+、Cu2+抑制酶的活力。巯基保护剂能明显增强酶的活力 ,而巯基结合试剂强烈抑制酶的活性。该酶对 β-  相似文献   

18.
The production of galacto-oligosaccharides (GOS) from lactose by A. oryzae beta-galactosidase immobilized on cotton cloth was studied. The total amounts and types of GOS produced were mainly affected by the initial lactose concentration in the reaction media. In general, more and larger GOS can be produced with higher initial lactose concentrations. A maximum GOS production of 27% (w/w) of initial lactose was achieved at 50% lactose conversion with 500 g/L of initial lactose concentration. Tri-saccharides were the major types of GOS formed, accounting for more than 70% of the total GOS produced in the reactions. Temperature and pH affected the reaction rate, but did not result in any changes in GOS formation. The presence of galactose and glucose at the concentrations encountered near maximum GOS greatly inhibited the reactions and reduced GOS yield by as much as 15%. The cotton cloth as the support matrix for enzyme immobilization did not affect the GOS formation characteristics of the enzyme, suggesting no diffusion limitation in the enzyme carrier. The thermal stability of the enzyme increased approximately 25-fold upon immobilization on cotton cloth. The half-life for the immobilized enzyme on cotton cloth was more than 1 year at 40 degrees C and 48 days at 50 degrees C. Stable, continuous operation in a plugflow reactor was demonstrated for 2 weeks without any apparent problem. A maximum GOS production of 21 and 26% (w/w) of total sugars was attained with a feed solution containing 200 and 400 g/L of lactose, respectively, at pH 4.5 and 40 degrees C. The corresponding reactor productivities were 80 and 106 g/L/h, respectively, which are at least several-fold higher than those previously reported.  相似文献   

19.
An intracellular beta-glycoside hydrolase with beta-glucosidase and beta-galactosidase activity, designated beta-glucosidase BGL1, was isolated to apparent homogeneity from the thermophilic ascomycete Talaromyces thermophilus CBS 236.58. The monomeric enzyme has a molecular mass of 50 kDa (SDS-PAGE) and an isoelectric point of 4.5-4.6. The enzyme is active with both glucosides such as cellobiose and galactosides including lactose; based on the catalytic efficiencies determined glucosides are the preferred substrates. beta-Galactosidase activity of BGL1 is activated by various mono and divalent cations including Na+, K+ and Mg2+, and it is moderately inhibited by its reaction products glucose and galactose. Its pH optimum for the hydrolysis of galactosides is in the range of 5.5-6.0, and its optimum temperature was found to be 50 degrees C (15 min assay). In addition to its hydrolytic activity, BGL1 shows a significant transferase activity which results in the formation of galacto-oligosaccharides. These have recently attracted interest because of possible applications in food industry. The highest yields of oligosaccharides was approximately 20% when using 38 gl(-1) lactose as the starting material.  相似文献   

20.
Trichoderma reesei RUT C-30 formed an extracellular alpha-galactosidase when it was grown in a batch culture containing lactose or locust bean gum as a carbon source. Short-chain alpha-galactosides (melibiose, raffinose, stachyose), as well as the monosaccharides galactose, dulcitol, arabinose, and arabitol, also induced alpha-galactosidase activity both when they were used as carbon sources (at a concentration of 1%) in batch cultures and in resting mycelia (at concentrations in the millimolar range). The addition of 50 mM glucose did not affect the induction of alpha-galactosidase formation by galactose. alpha-Galactosidase from T. reesei RUT C-30 was purified to homogeneity from culture fluids of galactose-induced mycelia. The active enzyme was a 50 +/- 3-kDa, nonglycosylated monomer which had an isoelectric point of 5.2. It was active against several alpha-galactosides (p-nitrophenyl-alpha-D-galactoside, melibiose, raffinose, and stachyose) and galactomannan (locust bean gum) and was inhibited by the product galactose. It released galactose from locust bean gum and exhibited synergism with T. reesei beta-mannanase. Its activity was optimal at pH 4, and it displayed broad pH stability (pH 4 to 8). Its temperature stability was moderate (60 min at 50 degrees C resulted in recovery of 70% of activity), and its highest level of activity occurred at 60 degrees C. Its action on galactomannan was increased by the presence of beta-mannanase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号