首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Germ cell transplantation in goats   总被引:19,自引:0,他引:19  
Transplantation of spermatogonial stem cells provides a unique approach for the study of spermatogenesis and manipulation of the male germ line. This technique may also offer an alternative to the currently inefficient methods of producing transgenic domestic animals. We have recently established the technique of spermatogonial transplantation, originally developed in laboratory rodents, in pigs, and this study was aimed to extend the technique to the goat. Isolated donor testis cells were infused into the seminiferous tubules of anesthetized recipient goats through an ultrasonographically-guided catheter inserted into the rete testis. Donor cells were obtained by enzymatic digestion of freshly collected testes from immature goats (either from the recipients' contralateral testis or from unrelated donors). Prior to transplantation, testis cells were labeled with a fluorescent marker to allow identification after transplantation. Recipient testes were examined for the presence and localization of labeled donor cells at 3-week intervals up to 12 weeks after transplantation. Labeled donor cells were found in the seminiferous tubules of all testes, comprising 10-35% of the examined tubules. Histological examination of the recipient testes did not reveal evident tissue damage, except for limited fibrotic changes at the site of needle insertion. Likewise there were no detectable local or systemic signs of immunologic reactions to the transplantations. These results indicate that germ cell transplantation is technically feasible in immature male goats and that donor-derived cells are retained in the recipient testis for at least three months and through puberty. This study represents the first report of germ cell transplantation in goats.  相似文献   

2.
Isolation and transplantation of spermatogonia in sheep   总被引:1,自引:0,他引:1  
Studies in rodents show that spermatogonial transplantation is an excellent new tool for studying spermatogenesis and for preservation and dissemination of genetics. The aim of this study was to adapt the technique to rams. Two issues were addressed: purification of stem cell spermatogonia, and efficient injection of donor spermatogonia into the seminiferous tubules of rams. We compared differential plating and Percoll gradient methods for purifying donor spermatogonia from ram lamb testes. Spermatogonia were identified with an antibody against PGP 9.5, a ubiquitin C-terminal hydrolase. Both purity and total number of spermatogonia recovered were higher after purification by Percoll gradient than by differential plating. Four approaches for injecting cells into the seminiferous tubules of ram testes were compared ex vivo: insertion of a needle into the extra-testicular rete testis after reflection of the head of the epididymis ('surgical' approach), and ultrasound-guided insertion of a needle into the extra-testicular rete, and the proximal and distal parts of the intra-testicular rete testis. 'Surgical' and ultrasound-guided approaches into the extra-testicular rete resulted in highest success rates and best filling of the seminiferous tubules. Finally, the ultrasound guided approach into the extra-testicular rete testis was validated in vivo by transplanting purified spermatogonia previously labeled with a fluorescent molecule (CFDA-SE). In seven of eight testes injected, donor cells were identified within the seminiferous epithelium for up to 2wk after transplantation, indicating the integration of donor cells.  相似文献   

3.
Germ cell transplantation from large domestic animals into mouse testes   总被引:19,自引:0,他引:19  
Donor-derived spermatogenesis after spermatogonial transplantation to recipient animals could serve as a novel approach to manipulate the male germ line in species where current methods of genetic modification are still inefficient. The objective of the present study was to investigate germ cell transplantation from boars, bulls, and stallions, which are economically important domestic animals, to mouse recipients. Donor testis cells (fresh, cryopreserved, or cultured for 1 month) were transplanted into testes of immunodeficient recipient mice in which endogenous spermatogenesis had been destroyed. Recipient testes were analyzed from 1 to > 12 months after transplantation for the presence of donor germ cells by donor-specific immunohistochemistry. Donor cells were present in most recipient testes with species-dependent differences in pattern and extent of colonization. Porcine donor germ cells formed chains and networks of round cells connected by intercellular bridges but later stages of donor-derived spermatogenesis were not observed. Transplanted bovine testis cells initially appeared similar but then developed predominantly into fibrous tissue within recipient seminiferous tubules. Few equine germ cells proliferated in mouse testes with no obvious difference between cells recovered from a scrotal or a cryptorchid donor testis. The pattern of colonization after transplantation of cultured cells did not resemble spermatogonial proliferation. These results indicate that fresh or cryopreserved germ cells from large animals can colonize the mouse testis but do not differentiate beyond the stage of spermatogonial expansion. Species-specific differences in the compatibility of large animal donors and mouse recipients were detected which cannot be predicted solely on the basis of phylogenetic distance between donor and recipient species.  相似文献   

4.
Testis cell transplantation from mice or rats into recipient mouse seminiferous tubules results in donor cell-derived spermatogenesis in nearly all host testes. Normal spermatozoa are produced and, in the most successful mouse transplantations, the donor haplotype is transmitted to progeny of the recipient. However, few studies have been performed in other species. In this report, we demonstrate that rat and mouse testis cells will generate donor cell-derived spermatogenesis in recipient rat seminiferous tubules. Depletion of endogenous spermatogenesis before donor cell transplantation was more difficult in rat than reported for mouse recipients. A protocol employing treatment of neonatal rats with busulfan was most effective in preparing recipients and allowed more than 90% of testes to be colonized by donor cells. Transplantation of mouse testis cells into rat seminiferous tubules was most successful in recipients made cryptorchid and treated with busulfan. In the best experiments, about 55% of rat testes were colonized by mouse cells. Both rat and mouse donor cell-derived spermatogenesis were improved by treatment of rat recipients with leuprolide, a gonadotropin-releasing hormone agonist. The studies indicated that recipient preparation for spermatogonial stem cell transplantation was critical in the rat and differs from the mouse. However, modification of currently used techniques should allow male germ line stem cell transplantation in many species.  相似文献   

5.
Transplantation of germ cells from rabbits and dogs into mouse testes.   总被引:23,自引:0,他引:23  
Spermatogonial stem cells of a fertile mouse transplanted into the seminiferous tubules of an infertile mouse can develop spermatogenesis and transmit the donor haplotype to progeny of the recipient mouse. When testis cells from rats or hamsters were transplanted to the testes of immunodeficient mice, complete rat or hamster spermatogenesis occurred in the recipient mouse testes, albeit with lower efficiency for the hamster. The objective of the present study was to investigate the effect of increasing phylogenetic distance between donor and recipient animals on the outcome of spermatogonial transplantation. Testis cells were collected from donor rabbits and dogs and transplanted into testes of immunodeficient recipient mice in which endogenous spermatogenesis had been destroyed. In separate experiments, rabbit or dog testis cells were frozen and stored in liquid nitrogen or cultured for 1 mo before transplantation to mice. Recipient testes were analyzed, using donor-specific polyclonal antibodies, from 1 to >12 mo after transplantation for the presence of donor germ cells. In addition, the presence of canine cells in recipient testes was demonstrated by polymerase chain reaction using primers specific for canine alpha-satellite DNA. Donor germ cells were present in the testes of all but one recipient. Donor germ cells predominantly formed chains and networks of round cells connected by intercellular bridges, but later stages of donor-derived spermatogenesis were not observed. The pattern of colonization after transplantation of cultured cells did not resemble spermatogonial proliferation. These results indicate that fresh and cryopreserved germ cells can colonize the mouse testis but do not differentiate beyond the stage of spermatogonial expansion.  相似文献   

6.
Transplantation of spermatogonial stem cells from fertile, transgenic donor mice to the testes of infertile recipients provides a unique system to study the biology of spermatogonial stem cells. To facilitate the investigation of treatment effects on colonization efficiency an analysis system was needed to quantify colonization of recipient mouse seminiferous tubules by donor stem cell‐derived spermatogenesis. In this study, a computer‐assisted morphometry system was developed and validated to analyze large numbers of samples. Donor spermatogenesis in recipient testes is identified by blue staining of donor‐derived spermatogenic cells expressing the E. coli lacZ structural gene. Images of seminiferous tubules from recipient testes collected three months after spermatogonial transplantation are captured, and stained seminiferous tubules containing donor‐derived spermatogenesis are selected for measurement based on their color by color thresholding. Colonization is measured as number, area, and length of stained tubules. Interactive, operator‐controlled color selection and sample preparation accounted for less than 10% variability for all collected parameters. Using this system, the relationship between number of transplanted cells and colonization efficiency was investigated. Transplantation of 104 cells per testis only rarely resulted in colonization, whereas after transplantation of 105 and 106 cells per testis the extent of donor‐derived spermatogenesis was directly related to the number of transplanted donor cells. It appears that about 10% of transplanted spermatogonial stem cells result in colony formation in the recipient testis. The present study establishes a rapid, repeatable, semi‐interactive morphometry system to investigate treatment effects on colonization efficiency after spermatogonial transplantation in the mouse. Mol. Reprod. Dev. 53:142–148, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

7.
Gonadotropin-releasing hormone (GnRH)-agonist or antagonist treatment supports recovery of spermatogenesis after irradiation damage in the rat and appears to be beneficial to colonization of recipient testes after spermatogonial transplantation from fertile donors to the testes of infertile recipients in rats and mice. In the present study, we quantified the effect of treatment of recipient mice with the GnRH-agonist leuprolide acetate on the extent of colonization by donor spermatogonial stem cells in the recipient testis. Testis cells from mice carrying transgenes, which produce beta-galactosidase in spermatogenic cells, were used as donor cells for transplantation to allow for quantification of donor spermatogenesis in the recipient testis by staining for enzyme activity. Donor cell colonization 3 months after transplantation was compared between recipients receiving leuprolide in different treatment protocols and untreated control mice. Two injections of leuprolide 4 weeks apart prior to transplantation with as little as 3.8 mg/kg resulted in a pronounced improvement in the number of donor-derived spermatogenic colonies as well as in the in the area of recipient seminiferous tubules occupied by donor cell spermatogenesis. Improved colonization efficiency by treatment with GnRH-agonist can make the technique of spermatogonial transplantation applicable to situations when only low numbers of donor cells are available.  相似文献   

8.
Germ cell transplantation was developed by Dr. Ralph Brinster and colleagues at the University of Pennsylvania in 19941,2. These ground-breaking studies showed that microinjection of germ cells from fertile donor mice into the seminiferous tubules of infertile recipient mice results in donor-derived spermatogenesis and sperm production by the recipient animal2. The use of donor males carrying the bacterial β-galactosidase gene allowed identification of donor-derived spermatogenesis and transmission of the donor haplotype to the offspring by recipient animals1. Surprisingly, after transplantation into the lumen of the seminiferous tubules, transplanted germ cells were able to move from the luminal compartment to the basement membrane where spermatogonia are located3. It is generally accepted that only SSCs are able to colonize the niche and re-establish spermatogenesis in the recipient testis. Therefore, germ cell transplantation provides a functional approach to study the stem cell niche in the testis and to characterize putative spermatogonial stem cells. To date, germ cell transplantation is used to elucidate basic stem cell biology, to produce transgenic animals through genetic manipulation of germ cells prior to transplantation4,5, to study Sertoli cell-germ cell interaction6,7, SSC homing and colonization3,8, as well as SSC self-renewal and differentiation9,10.Germ cell transplantation is also feasible in large species11. In these, the main applications are preservation of fertility, dissemination of elite genetics in animal populations, and generation of transgenic animals as the study of spermatogenesis and SSC biology with this technique is logistically more difficult and expensive than in rodents. Transplantation of germ cells from large species into the seminiferous tubules of mice results in colonization of donor cells and spermatogonial expansion, but not in their full differentiation presumably due to incompatibility of the recipient somatic cell compartment with the germ cells from phylogenetically distant species12. An alternative approach is transplantation of germ cells from large species together with their surrounding somatic compartment. We first reported in 2002, that small fragments of testis tissue from immature males transplanted under the dorsal skin of immunodeficient mice are able to survive and undergo full development with the production of fertilization competent sperm13. Since then testis tissue xenografting has been shown to be successful in many species and emerged as a valuable alternative to study testis development and spermatogenesis of large animals in mice14.  相似文献   

9.
Primate spermatogonial stem cells colonize mouse testes   总被引:17,自引:0,他引:17  
In mice, transplantation of spermatogonial stem cells from a fertile male to the seminiferous tubules of an infertile recipient male results in progeny with donor-derived haplotype. Attempts to extend this approach by transplanting human testis cells to mice have led to conflicting claims that no donor germ cells persisted or that human spermatozoa were produced in the recipient. To examine this issue we used the baboon, a primate in which testis cell populations of several ages could be obtained for transplantation, and demonstrate that donor spermatogonial stem cells readily establish germ cell colonies in recipient mice, which exist for periods of at least 6 mo. However, differentiation of germ cells toward the lumen of the tubule and production of spermatozoa did not occur. The presence of baboon spermatogonial stem cells and undifferentiated spermatogonia in mouse seminiferous tubules for long periods after transplantation indicates that antigens, growth factors, and signaling molecules that are necessary for interaction of these cells and the testis environment have been preserved for 100 million years of evolutionary separation. Because germ cell differentiation and spermatogenesis did not occur, the molecules necessary for this process appear to have undergone greater divergence between baboon and mouse.  相似文献   

10.
Initiation of the first wave of spermatogenesis in the neonatal mouse testis is characterized by the differentiation of a transient population of germ cells called gonocytes found in the center of the seminiferous tubule. The fate of gonocytes depends upon these cells resuming mitosis and developing the capacity to migrate from the center of the seminiferous tubule to the basement membrane. This process begins approximately Day 3 postpartum in the mouse, and by Day 6 postpartum differentiated type A spermatogonia first appear. It is essential for continual spermatogenesis in adults that some gonocytes differentiate into spermatogonial stem cells, which give rise to all differentiating germ cells in the testis, during this neonatal period. The presence of spermatogonial stem cells in a population of cells can be assessed with the use of the spermatogonial stem cell transplantation technique. Using this assay, we found that germ cells from the testis of Day 0-3 mouse pups can colonize recipient testes but do not proliferate and establish donor-derived spermatogenesis. However, germ cells from testes of Day 4-5 postpartum mice colonize recipient testes and generate large areas of donor-derived spermatogenesis. Likewise, germ cells from Day 10, 12, and 28 postpartum animals and adult animals colonize and establish donor-derived spermatogenesis, but a dramatic reduction in the number of colonies and the extent of colonization occurs from germ cell donors Days 12-28 postpartum that continues in adult donors. These results suggest spermatogonial stem cells are not present or not capable of initiating donor-derived spermatogenesis until Days 3-4 postpartum. The analysis of germ cell development during this time frame of development and spermatogonial stem cell transplantation provides a unique system to investigate the establishment of the stem cell niche within the mouse testis.  相似文献   

11.
Recently a system was developed in which transplanted donor spermatogonial stem cells establish complete spermatogenesis in the testes of an infertile recipient. To obtain insight into stem cell activity and the behavior of donor germ cells, the pattern and kinetics of mouse spermatogonial colonization in recipient seminiferous tubules were analyzed during the 4 mo following transplantation. The colonization process can be divided into three continuous phases. First, during the initial week, transplanted cells were randomly distributed throughout the tubules, and a small number reached the basement membrane. Second, from 1 wk to 1 mo, donor cells on the basement membrane divided and formed a monolayer network. Third, beginning at about 1 mo and continuing throughout the observation period, cells in the center of the network differentiated extensively and established a colony of spermatogenesis, which expanded laterally by repeating phase two and then three. An average of 19 donor cell-derived colonies developed from 10(6) cells transplanted to the seminiferous tubules of a recipient testis; the number of colonized sites did not change between 1 and 4 mo. However, the length of the colonies increased from 0.73 to 5.78 mm between 1 and 4 mo. These experiments establish the feasibility of studying in a systematic and quantitative manner the pattern and kinetics of the colonization process. Using spermatogonial transplantation as a functional assay, it should be possible to assess the effects of various treatments on stem cells and on recipient seminiferous tubules to provide unique insight into the process of spermatogenesis.  相似文献   

12.
The continuous production of mammalian sperm is maintained by the proliferation and differentiation of spermatogonial stem cells that originate from primordial germ cells (PGCs) in the early embryo. Although spermatogonial stem cells arise from PGCs, it is not clear whether fetal male germ cells function as spermatogonial stem cells able to produce functional sperm. In the present study, we examined the timing and mechanisms of the commitment of fetal germ cells to differentiate into spermatogonial stem cells by transplantation techniques. Transplantation of fetal germ cells into the seminiferous tubules of adult testis showed that donor germ cells, at 14.5 days postcoitum (dpc), were able to initiate spermatogenesis in the adult recipient seminiferous tubules, whereas no germ cell differentiation was observed in the transplantation of 12.5-dpc germ cells. These results indicate that the commitment of fetal germ cells to differentiate into spermatogonial stem cells initiates between embryonic days 12.5 and 14.5. Furthermore, the results suggest the importance of the interaction between germ cells and somatic cells in the determination of fetal germ cell differentiation into spermatogonial stem cells, as normal spermatogenesis was observed when a 12.5-dpc whole gonad was transplanted into adult recipient testis. In addition, sperm obtained from the 12.5- dpc male gonadal explant had the ability to develop normally if injected into the cytoplasm of oocytes, indicating that normal development of fetal germ cells in fetal gonadal explant occurred in the adult testicular environment.  相似文献   

13.
Transplantation of germ cells from fertile donor mice to the testes of infertile recipient mice results in donor-derived spermatogenesis and transmission of the donor's genetic material to the offspring of recipient animals. Germ cell transplantation provides a bioassay to study the biology of male germ line stem cells, develop systems to isolate and culture spermatogonial stem cells, examine defects in spermatogenesis and treat male infertility. Although most widely studied in rodents, germ cell transplantation has been applied to larger mammals. In domestic animals including pigs, goats and cattle, as well as in primates, germ cells can be transplanted to a recipient testis by ultrasonographic-guided cannulation of the rete testis. Germ cell transplantation was successful between unrelated, immuno-competent pigs and goats, whereas transplantation in rodents requires syngeneic or immuno-compromised recipients. Genetic manipulation of isolated germ line stem cells and subsequent transplantation will result in the production of transgenic sperm. Transgenesis through the male germ line has tremendous potential in domestic animal species where embryonic stem cell technology is not available and current options to generate transgenic animals are inefficient. As an alternative to transplantation of isolated germ cells to a recipient testis, ectopic grafting of testis tissue from diverse mammalian donor species, including horses and primates, into a mouse host represents a novel possibility to study spermatogenesis, to investigate the effects of drugs with the potential to enhance or suppress male fertility, and to produce fertile sperm from immature donors. Therefore, transplantation of germ cells or xenografting of testis tissue are uniquely valuable approaches for the study, preservation and manipulation of male fertility in domestic animals.  相似文献   

14.
Spermatogonial stem cell transplantation, cryopreservation and culture.   总被引:12,自引:0,他引:12  
Testis cells of a fertile male mouse can be transplanted to the seminiferous tubules of an infertile male, where the donor spermatogonial stem cells will establish spermatogenesis and produce spermatozoa that transmit the donor haplotype to progeny. In addition, stem cells can be cryopreserved for long periods, thereby making male germ lines immortal. Recently, mouse testis cells have been cultured for longer than 3 months and, following transplantation, produced spermatogenesis. These techniques are likely to be applicable to many species, since rat testis cells can be cryopreserved and generate spermatogenesis in the seminiferous tubules of immunodeficient mice.  相似文献   

15.
This study investigated the effect of increased phylogenetic distance on the outcome of spermatogonial transplantation, with porcine donors and mice recipients. It was designed to develop a technique for detecting foreign donor cells in recipient animals. Porcine male germ cells were harvested from postnatal male testes and incubated with the lipophilic membrane dye PKH-26. For transplantation, approximately 10(6) PKH-26-labelled porcine male germ cells were injected into the efferent ducts of mouse testes. Animals were sacrificed at post-graft days 1, 10, 30, 45, 60 and 150 (n = 5 each). Serial frozen sections of explanted testes were prepared for detecting labelled cells. Transplanted porcine donor cells were easily detected in the recipient tubules for 8 weeks. After transplantation, we could detect both incorporation into the basement membrane and differentiation of grafted porcine donor cells by our double detection system, using PKH staining and slide PCR. However, our RT-PCR and apoptosis results revealed that most of the grafted porcine male donor cells could not differentiate past early-meiotic spermatocytes. We could induce partial differentiation of xenografted porcine donor cells in mouse testes, but not full induction of spermatogenesis. We have developed a very reliable technique for detecting foreign donor cells in recipient animals using a combination of PKH staining and slide PCR methods. Our results provide a valuable experimental model for applying and evaluating this technology in other species.  相似文献   

16.
Mutations in the dominant-white spotting (W; c-kit) and stem cell factor (Sl; SCF) genes, which encode the transmembrane tyrosine kinase receptor and its ligand, respectively, affect both the proliferation and differentiation of many types of stem cells. Almost all homozygous W or Sl mutant mice are sterile because of the lack of differentiated germ cells or spermatogonial stem cells. To characterize spermatogenesis in c-kit/SCF mutants and to understand the role of c-kit signal transduction in spermatogonial stem cells, the existence, proliferation, and differentiation of spermatogonia were examined in the W/Wv mutant mouse testis. In the present study, some of the W/Wv mutant testes completely lacked spermatogonia, and many of the remaining testes contained only a few spermatogonia. Examination of the proliferative activity of the W/Wv mutant spermatogonia by transplantation of enhanced green fluorescent protein (eGFP)-labeled W/Wv spermatogonia into the seminiferous tubules of normal SCF (W/Wv) or SCF mutant (Sl/Sld) mice demonstrated that the W/Wv spermatogonia had the ability to settle and proliferate, but not to differentiate, in the recipient seminiferous tubules. Although the germ cells in the adult W/Wv testis were c-kit-receptor protein-negative undifferentiated type A spermatogonia, the juvenile germ cells were able to differentiate into spermatogonia that expressed the c-kit-receptor protein. Furthermore, differentiated germ cells with the c-kit-receptor protein on the cell surface could be induced by GnRH antagonist treatment, even in the adult W/Wv testis. These results indicate that all the spermatogonial stem cell characteristics of settlement, proliferation, and differentiation can be demonstrated without stimulating the c-kit-receptor signal. The c-kit/SCF signal transduction system appears to be necessary for the maintenance and proliferation of differentiated c-kit receptor-positive spermatogonia but not for the initial step of spermatogonial cell differentiation.  相似文献   

17.
In mice, the juvenile spermatogonial depletion (jsd) mutation results in a single wave of spermatogenesis followed by failure of type A spermatogonial stem cells to repopulate the testis, rendering male animals sterile. It is not clear whether the defect in jsd resides in a failure of the somatic component to support spermatogenesis or in a failure that is intrinsic to the mutant's germ cells. To determine if the jsd intratesticular environment is capable of supporting spermatogenesis, germ cell transplantation experiments were performed in which C57BL/6 ROSA germ cells were transplanted into jsd recipients. To determine if jsd spermatogonia are able to develop in a permissive seminiferous environment, jsd germ cells were transplanted into W/W(v) and busulfan-treated C57BL/6 animals. The data demonstrate that up to 7 mo after transplantation of normal germ cells, jsd seminiferous tubules are capable of supporting spermatogenesis. In contrast, when jsd germ cells were transplanted into busulfan-treated C57BL/6 testis, or into testis of W/W(v) mice, no jsd-derived spermatogenesis was observed. The data support the hypothesis that the jsd phenotype is due to a defect in the germ cells themselves, and not in the intratubular environment.  相似文献   

18.
Functional analysis of stem cells in the adult rat testis   总被引:12,自引:0,他引:12  
Adult stem cells maintain several self-renewing systems and processes in the body, including the epidermis, hematopoiesis, intestinal epithelium, and spermatogenesis. However, studies on adult stem cells are hampered by their low numbers, lack of information about morphologic or biochemical characteristics, and absence of functional assays, except for hematopoietic and spermatogonial stem cells. We took advantage of the recently developed spermatogonial transplantation technique to analyze germ line stem cells of the rat testis. The results indicate that the stem cell concentration in rat testes is 9.5-fold higher than that in mouse testes, and spermatogenic colonies derived from rat donor testis cells are 2.75 times larger than mouse-derived colonies by 3 mo after transplantation. Therefore, the extent of spermatogenesis from rat stem cells was 26-fold greater than that from mouse stem cells at the time of recipient testis analysis. Attempts to enrich spermatogonial stem cells in rat testis populations using the experimental cryptorchid procedure were not successful, but selection by attachment to laminin-coated plates resulted in 8.5-fold enrichment. Spermatogonial stem cells are unique among adult stem cells because they pass genetic information to the next generation. The high concentration of stem cells in the rat testis and the rapid expansion of spermatogenesis after transplantation will facilitate studies on stem cell biology and the introduction of genetic modifications into the male germ line. The functional differences between spermatogonial stem cells of rat vs. mouse origin after transplantation suggest that the potential of these cells may vary greatly among species.  相似文献   

19.
Germ cell transplantation is a technique that transfers donor testicular cells into recipient testes. A population of germ cells can colonize the recipient testis, initiate spermatogenesis, and produce sperm capable of fertilization. In the present study, a nonmosaic Klinefelter bull was used as a germ cell recipient. The donor cell suspension was introduced into the rete testis using ultrasound-guided puncture. A pulsatile administration of GnRH was performed to stimulate spermatogenesis. The molecular approach to detect donor cells was done by a quantitative polymerase chain reaction with allele discrimination based on a genetic mutation between donor and recipient. Therefore, a known genetic mutation, associated with coat-color phenotype, was used to calculate the ratio of donor to recipient cells in the biopsy specimens and ejaculates for 10 mo. After slaughtering, meiotic preparations were performed. The injected germ cells did not undergo spermatogenesis. Six months after germ cell transplantation, the donor cells were rejected, which indicates that the donor cells could not incorporate in the testis. The hormone stimulation showed that the testosterone-producing Leydig cells were functionally intact. Despite subfertility therapy, neither the recipient nor the donor cells underwent spermatogenesis. Therefore, nonmosaic Klinefelter bulls are not suitable as germ cell recipients. Future germ cell recipients in cattle could be mosaic Klinefelters, interspecies hybrids, bulls with Sertoli cell-only syndrome, or bulls with disrupted germ cell migration caused by RNA interference.  相似文献   

20.
The niche is considered to play an important role in stem cell biology. Sertoli cells are the only somatic cells in the seminiferous tubule that closely interact with germ cells to create a favorable environment for spermatogenesis. However, little is known about how Sertoli cells develop to form the male germ line niche. We report here that Sertoli cells recovered and dissociated from testes of donor male mice can be microinjected into recipient testes, form mature seminiferous tubule structures, and support spermatogenesis. Sertoli cells from perinatal donors had a dramatically greater capacity for generating seminiferous tubules than those from adult donors. Furthermore, transplantation of wild-type Sertoli cells into infertile Steel/Steel(dickie) testes created a permissive testicular microenvironment for generating spermatogenesis and spermatozoa. Thus, our results demonstrate that the male germ line stem cell niche can be transferred between animals. In addition, the technique provides a novel tool with which to analyze spermatogenesis and might provide a mechanism for correcting fertility in males suffering from supporting cell defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号