首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Epidermal growth factor (EGF) has been found to be mitogenic in a variety of tissues. We investigated the biological effect of EGF on early pregnant human decidua and the non-pregnant decidualized human endometrium in the primary cell culture. EGF had a stimulatory action on cell proliferation in the early pregnant decidual cells and an inhibitory effect on prolactin (PRL) secretion from the decidual cells. The addition of progesterone into culture medium suppressed cell proliferation of decidual cells, whereas it enhanced PRL secretion from decidua. The analysis of the specific receptor for EGF in the early pregnant decidua and non-pregnant decidualized endometrium revealed that both tissues had a single component EGF receptor with a dissociation constant of nM order. These results suggest that EGF may play a role in the growth and function of endometrial stromal cells.  相似文献   

3.
4.
5.
6.
7.
The effects of epidermal growth factor (EGF) on human endometrial stromal cells have not been characterized well, although production of EGF in endometrial epithelial and stromal cells and expression of EGF receptors in endometrial stromal cells have been reported. We investigated the effects of EGF on endometrial cell viability, 8-Br-cAMP-induced stromal decidualization, and prolactin secretion from decidualized endometrial stromal cells using an in vitro decidualization activity assay of human endometrial stromal cells. EGF did not show any significant effects on viable cell numbers of nondecidualized and 8-Br-cAMP-induced decidualized cells. Prolactin release from the 8-Br-cAMP-induced decidualized cells was not affected by EGF. However, EGF dose-dependently inhibited prolactin release from the stromal cells that were in the process of decidualization by co-stimulation with 8-Br-cAMP and EGF, though there was no significant change in viable cell numbers of the 8-Br-cAMP-stimulated decidualizing cells. Flow cytometric analysis revealed that 8-Br-cAMP enhanced EGF receptor expression on the endometrial stromal cells. These results indicate that endometrial EGF inhibits decidualization through autocrine/paracrine mechanisms.  相似文献   

8.
9.
In each menstrual cycle endometrial stromal cells (hESC) proliferate and differentiate into specialized decidual cells, a process termed decidualization, which regulates endometrial receptivity. Decidualization is mainly controlled by sex ovarian hormones, estradiol (E2) and progesterone. E2 plays an important role in the expression of the progesterone receptor and promotes the endometrial stromal cells differentiation. Our group previously reported that anandamide (AEA) impairs decidualization through cannabinoid receptor 1 (CB1). In this study, we hypothesized whether AEA inhibitory effect on cell decidualization could be mediated through interaction with aromatase and consequent interference in estradiol production/signaling. We used an immortalized human endometrial stromal cell line (St-T1b) and human decidual fibroblasts (HdF) derived from human term placenta. In cells exposed to a differentiation stimulus, AEA-treatment prevents the increase of the expression of CYP19A1 gene encoding aromatase, E2 levels and of estradiol receptor expression, that are observed in differentiating cells. Regarding CYP19A1 mRNA levels, the effect was partially reverted by a CB1 receptor antagonist and by a COX2 inhibitor. In addition, we report that AEA presents anti-aromatase activity in placental microsomes, the nature of the inhibition being the uncommon mixed type as revealed by the kinetic studies. Structural analysis of the AEA-Aromatase complexes determined that AEA may bind to the active site pocket of the enzyme. In overall we report that AEA inhibits aromatase activity and may affect E2 signaling crucial for the decidualization process, indicating that a deregulation of the endocannabinoid system may be implicated in endometrial dysfunction and in fertility/infertility disorders.  相似文献   

10.
11.
Explants of human endometrium were cultured in serum-free nutrient medium and the effects of continuous and intermittent progesterone treatment on decidual prolactin (dPRL) production compared. The synthesis of dPRL was induced in cultures of proliferative and secretory endometrium when progesterone (50 ng/ml) was added to the medium. The amount of dPRL produced by these cultures increased gradually during 41 days of continuous progesterone treatment. When progesterone was provided for only the first 14 days of a 28-day cycle, dPRL production continued to increase during the first wk of culture in the absence of exogenous hormone and then began to decline. A similar pattern was elicited during a second 28-day cycle. Explants of endometrium fixed for histologic examination after either continuous or intermittent progesterone treatment contained large "decidualized" stromal cells. These findings indicate that progesterone can induce and maintain decidualization and dPRL synthesis in organ cultures of human endometrium, dPRL production increases immediately after progesterone is withdrawn, and long-term dPRL production is not maintained in the absence or progesterone.  相似文献   

12.
13.
Steroid receptors in the stromal cells of endometrium and its disease counterpart tissue endometriosis play critical physiologic roles. We found that mRNA and protein levels of estrogen receptor 2 (ESR2) were strikingly higher, whereas levels of estrogen receptor 1 (ESR1), total progesterone receptor (PGR), and progesterone receptor B (PGR B) were significantly lower in endometriotic versus endometrial stromal cells. Because ESR2 displayed the most striking levels of differential expression between endometriotic and endometrial cells, and the mechanisms for this difference are unknown, we tested the hypothesis that alteration in DNA methylation is a mechanism responsible for severely increased ESR2 mRNA levels in endometriotic cells. We identified a CpG island occupying the promoter region (-197/+359) of the ESR2 gene. Bisulfite sequencing of this region showed significantly higher methylation in primary endometrial cells (n = 8 subjects) versus endometriotic cells (n = 8 subjects). The demethylating agent 5-aza-2'-deoxycytidine significantly increased ESR2 mRNA levels in endometrial cells. Mechanistically, we employed serial deletion mutants of the ESR2 promoter fused to the luciferase reporter gene and transiently transfected into both endometriotic and endometrial cells. We demonstrated that the critical region (-197/+372) that confers promoter activity also bears the CpG island, and the activity of the ESR2 promoter was strongly inactivated by in vitro methylation. Taken together, methylation of a CpG island at the ESR2 promoter region is a primary mechanism responsible for differential expression of ESR2 in endometriosis and endometrium. These findings may be applied to a number of areas ranging from diagnosis to the treatment of endometriosis.  相似文献   

14.
The expression of laminin, a major constituent of endometrial cell basement membranes, is increased during differentiation of human endometrial stromal cells (decidualization). To determine whether laminin plays a role in decidualization, we studied the effects of laminin substrate on the synthesis and release of prolactin (PRL) and insulin-like growth factor binding protein-1 (IGFBP-1), two major secretory proteins of decidualized stromal cells. Endometrial stromal cells were plated on laminin as well as several other extracellular matrix (ECM) proteins (types 1 and IV collagen or fibronectin) and on plastic, and cultured in media containing medroxyprogesterone acetate (MPA) and estradiol. Cells cultured on plastic or ECM proteins displayed similar morphological changes indicative of decidualization. However, the release of PRL and IGFBP-1 from cells cultured on plastic and ECM proteins (types 1 and IV collagen and fibronection) was approximately 2.1-fold and 2.8-fold greater respectively, than from cells cultured on laminin. The decrease in PRL and IGFBP-1 expression in cells cultured on laminin was not due to differences in initial cell attachment efficiency or final DNA content. In addition, laminin had no effect on the content of laminin protein or fibronectin mRNA levels, indicating that the effects of laminin on PRL and IGFBP-1 were specific. PGE2 stimulated the release of PRL and IGFBP-1 from cells cultured on laminin to levels comparable to those from cells cultured on plastic or other ECM proteins. This indicates that the decrease in PRL and IGFBP-1 release by laminin was not due to a generalized unresponsiveness. In contrast to the effects of laminin during decidualization, PRL expression was not altered by laminin in terminally differentiated decidual cells isolated at term. Our results support a role for laminin in selectively regulating PRL and IGFBP-1 gene expression during in vitro decidualization of human endometrial stromal cells. © 1995 Wiley-Liss, Inc.  相似文献   

15.
16.
Deletion analysis of the human PRL promoter in endometrial stromal cells decidualized in vitro revealed a 536-bp enhancer located between nucleotide (nt) -2,040 to -1,505 in the 5'-flanking region. The 536-bp enhancer fragment ligated into a thymidine kinase (TK) promoter-luciferase reporter plasmid conferred enhancer activity in decidual-type cells but not nondecidual cells. DNase I footprint analysis of decidualized endometrial stromal cells revealed three protected regions, FP1-FP3. Transfection of overlapping 100-bp fragments of the 536-bp enhancer indicated that FP1 and FP3 each conferred enhancer activity. Gel shift assays indicated that both FP1 and FP3 bind activator protein 1 (AP-1), and JunD and Fra-2 are components of the AP-1 complex in decidual fibroblasts. Mutation of the AP-1 binding site in either FP1 or FP3 decreased enhancer activity by approximately 50%, while mutation of both sites almost completely abolished activity. Coexpression of the 536-bp enhancer and A-fos, a dominant negative to AP-1, decreased enhancer activity by approximately 70%. Conversely, coexpression of Fra-2 in combination with JunD or c-Jun and p300 increased enhancer activity 6- to 10-fold. Introduction of JunD and Fra-2 into nondecidual cells is sufficient to confer enhancer activity. JunD and Fra-2 protein expression was markedly increased in secretory phase endometrium and decidua of early pregnancy (high PRL content) compared with proliferative phase endometrium (no PRL). These investigations indicate that the 5'-flanking region of the human PRL gene contains a decidua-specific enhancer between nt -2,040/-1,505 and AP-1 binding sites within this enhancer region are critical for activity.  相似文献   

17.
18.
A critical role of progesterone (P) during early pregnancy is to induce differentiation of the endometrial stromal cells into specialized decidual cells that support the development of the implanting embryo. The P-induced signaling pathways that participate in the formation and function of the decidual cells remain poorly understood. We report here that the expression of the bone morphogenetic protein 2 (BMP2), a morphogen belonging to the TGFbeta superfamily, is induced downstream of P action in the mouse uterine stroma during decidualization. To determine the function of BMP2 during this differentiation process, we employed a primary culture system in which undifferentiated stromal cells isolated from pregnant mouse uterus undergo decidualization. When recombinant BMP2 was added to these stromal cultures, it markedly advanced the differentiation program. We also found that siRNA-mediated silencing of BMP2 expression in these cells efficiently blocked the differentiation process. Gene expression profiling experiments identified Wnt4 as a downstream target of BMP2 regulation in stromal cells undergoing decidualization. Attenuation of Wnt4 expression by siRNAs greatly reduced stromal differentiation in vitro, indicating that it is a key mediator of BMP2-induced decidualization. We also observed a remarkable induction in the expression of BMP2 in human endometrial stromal cells during decidualization in vitro in response to steroids and cAMP. Addition of BMP2 to these cultures led to a robust enhancement of Wnt4 expression and stimulated the differentiation process. Collectively, our studies uncovered a unique conserved pathway involving BMP2 and Wnt4 that mediates P-induced stromal decidualization in the mouse and the human.  相似文献   

19.
20.
Decidualization is an essential process of endometrial differentiation for embryo implantation and maintenance of pregnancy. Recently, uterine movement-induced mechanical stress was noticed to have possible effects on endometrial functions. In this study, we addressed the possible effect of mechanical stress on the process of decidualization of endometrial stromal cells (ESC). ESC were cultured on flexible-bottomed culture plates. After decidualization was achieved with estradiol and progesterone for 12 days, cultures were continued for 24 h with or without cyclic stretch (25% elongation) in serum-free conditions at a rate of 2 cycles/min using a computer-operated cell tension system. Concentrations of insulin-like growth factor-binding protein-1 (IGFBP-1), a marker of decidualization, in the conditioned medium were measured by specific ELISA, and IGFBP-1 mRNA expression in the ESC was measured by RT-PCR. Cyclic stretch remarkably increased IGFBP-1 secretion from decidualized ESC. It also increased IGFBP-1 mRNA in decidualized ESC. The increase in IGFBP-1 secretion was inhibited by actinomycin D but not by indomethacin, PD-98059, or H-89. Conditioned medium of decidualized ESC cultured with cyclic stretch increased IGFBP-1 secretion from decidualized ESC cultured under stationary conditions. These findings imply that uterine movement modulates decidualization of the endometrium and has a regulatory effect on reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号