首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Local delivery of viral vectors can enhance the efficacy of therapies by selectively affecting necessary tissues and reducing the required vector dose. Pluronic F127 is a thermosensitive polymer that undergoes a solution–gelation (sol–gel) transition as temperature increases and can deliver vectors without damaging them. While pluronics can be spread over large areas, such as the surface of an organ, before gelation, they lack sufficient adhesivity to remain attached to some tissues, such as the surface of the heart or mucosal surfaces. Here, we utilized blends of pluronic F127 and polycarbophil (PCB), a mucoadhesive agent, to provide the necessary adhesivity for local delivery of viral vectors to the cardiac muscle. The effects of PCB concentration on adhesive properties, sol–gel temperature transition and cytocompatibility were evaluated. Rheological studies showed that PCB decreased the sol–gel transition temperature at concentrations >1% and increased the adhesive properties of the gel. Furthermore, these gels were able to deliver viral vectors and transduce cells in vitro and in vivo in a neonatal mouse apical resection model. These gels could be a useful platform for delivering viral vectors over the surface of organs where increased adhesivity is required.  相似文献   

2.
M Milas  X Shi  M Rinaudo 《Biopolymers》1990,30(3-4):451-464
This paper concerns the behavior in dilute and demidilute solutions of deacetylated gellan. The conformational transition, controlled by temperature and ionic strength, is investigated. It corresponds to a double-helix single-chain transition. Large ionic selectivity is observed in the helical conformation th at controls the degree of aggregation upon gelation. Potentiometry and conductivity measurements are interpreted in terms of the Manning polyelectrolyte theory in the sol state.  相似文献   

3.
Gelation of sickle cell haemoglobin. II. Methaemoglobin   总被引:1,自引:0,他引:1  
Sickle cell methaemoglobin was assayed for gel formation by an equilibrium ultracentrifugation method previously described. A phase change from sol to gel, indicative of gelation, occurred, depending on conditions, at concentrations between 0.35 and 0.5 g/ml, considerably higher than concentrations observed previously for gelation of deoxyhaemoglobin S. Inositol hexaphosphate favours gelation, but gelation is seen also in its absence. Lowering pH toward 6 favours gelation. If gelation is assumed to require molecules in the T quaternary conformation, these results provide further evidence that methaemoglobin exists in R-T equilibrium in solution and that this equilibrium lies between the extremes exhibited by deoxyhaemoglobin (T-state) and carbon monoxide or oxyhaemoglobin (R-state).  相似文献   

4.
Gelation of gelatin under various conditions has been followed by atomic force microscopy (AFM) with the objective of understanding more fully the structure formed during the gelation process. AFM images were obtained of the structures formed from both the bulk sol and in surface films during the onset of gelation. While gelation occurred in the bulk sol, the extent of helix formation was monitored by measurements of optical rotation, and the molecular aggregation was imaged by AFM. Interfacial gelatin films formed at the air-water interface were also studied. Measurements of surface tension and surface rheology were made periodically and Langmuir-Blodgett films were drawn from the interface to allow AFM imaging of the structure of the interfacial layer as a function of time. Structural studies reveal that at low levels of helical content the gelatin molecules assemble into aggregates containing short segments of dimensions comparable to those expected for gelatin triple helices. With time larger fibrous structures appear whose dimensions suggest that they are bundles of triple helices. As gelation proceeds, the number density of fibers increases at the expense of the smaller aggregates, eventually assembling into a fibrous network. The gel structure appears to be sensitive to the thermal history, and this is particularly important in determining the structure and properties of the interfacial films. © 1998 John Wiley & Sons, Inc. Biopoly 46: 245–252, 1998  相似文献   

5.
N.m.r. and rheological measurements have been used to study the gelation of iota carrageenan. Gelation has been found to occur only at polymer concentrations above the critical entanglement concentration. The high temperature sol state above the gel-sol transition appears to be an entangled polymer network. Although Li+ and Na+ ions are less effective at gelling the polymer than K+, Rb+ and Cs+ all cationic forms studied gel at sufficiently high polymer concentration and ionic strength. 7Li+, 23Na, 39K, 87Rb and 133Cs n.m.r. studies have been made as a function of temperature. The lithium salt form (2.2% w/w concentration) formed a viscoelastic solution at room temperature. The other salt forms gelled on cooling. The spectra of Li, Na and Cs carrageenan showed little change on heating whereas K and Rb spectra showed marked changes in apparent intensity. The nature of the cation interaction with the juntion zones is discussed.  相似文献   

6.
Sol–gel transition of gelatin was analyzed as a multisite stoichiometric reaction of a gelatin molecule with water and solute molecules. The equilibrium sol–gel transition temperature, Tt, was estimated from the average of gelation and melting temperature measured by differential scanning calorimetry. From Tt and the melting enthalpy, ΔHsol, the equilibrium sol‐to‐gel ratio was estimated by the van't Hoff equation. The reciprocal form of the Wyman–Tanford equation, which describes the sol‐to‐gel ratio as a function of water activity, was successfully applied to obtain a good linear relationship. From this analysis, the role of water activity on the sol–gel transition of gelatin was clearly explained and the contributions of hydration and solute binding to gelatin molecules were separately discussed in sol–gel transition. The general solution for the free energy for gel‐stabilization in various solutions was obtained as a simple function of solute concentration. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 685–691, 2015.  相似文献   

7.
The rheology of dense suspensions of beta-casein micelles is investigated at pH 6. For a given temperature, the viscosity increases dramatically at a critical concentration (Cc) of about 100 g/L due to jamming of the micelles. For a given concentration close to and above Cc, the viscosity of dense suspensions decreases strongly with increasing temperature because Cc increases. The suspensions show weak shear thickening followed by strong shear thinning. At lower pH, that is, closer to the isoelectric point, spontaneous gelation is observed, which is favored by lowering the temperature and addition of sodium polyphosphate. The gelation process is studied at pH 5.5 by rheology and light scattering.  相似文献   

8.
We observed gelation of a 23-residue peptide derived from the beta-sheet domain of platelet factor-4 (PF4(24)(-)(46)). The gels were primarily heterogeneous mixtures of 50-200 microm spherical aggregates in a less-dense gel matrix. Infrared and circular dichroism spectroscopies showed gelation involving the conversion of PF4(24)(-)(46) from random coil to beta-sheet. We used aggregation-induced NMR resonance broadening to show that temperature, pH, and ionic strength influenced PF4(24)(-)(46) gelation rates. Under identical solution conditions, gel formation took days at T /= 50 degrees C. Gelation was most rapid at pH values near the pK(a) of the central His35 residue. Increases in solution ionic strength reduced the critical gelation concentration of PF4(24)(-)(46). Our results suggest that PF4(24)(-)(46) gels by a process combining aspects of both heat-set and beta-fibril gelation mechanisms.  相似文献   

9.
1). During the sol to gel transformation of deoxygenated sickle hemoglobin, a time-dependent process preceding gel formation (lag phase) was demonstrated that was inversely proportional to a function of the hemoglobin concentration and that occurred without alteration in temperature, pH, or oxygen tension. 2). As determined by the Schachman modification of the capillary viscometer, preparations of oxyhemoglobin S and A and deoxyhemoglobin A were indistinguishable when compared over a wide range of concentrations. Up to the concentration at which gelling occurred, deoxyhemoglobin S exhibited the same viscosity behavior. The viscosity of deoxygenated hemoglobin S within the lower gelling concentration range was normal during the lag phase and became abnormally high only at the time of gelation.  相似文献   

10.
The gelling properties (gel time (tgel) and gel strength) of a 10% (w/w) gelatin sol were investigated as a function of genipin (GP) concentration (0–15 mM) and temperature (25–55 °C) to discern mechanisms and optimal conditions for fixation. Gel time increased with increasing temperature, reached a maximum, and then declined as temperature was raised further. By contrast, network strength data followed the opposite trend. From the thermal behavior of tgel and network strength, it was inferred that gelation in the low-temperature regime was dominated by hydrogen bonding, while in the high-temperature regime it was dominated by covalent crosslinking. At higher temperatures, crosslinking was described by an Arrhenius rate law expression, with activation energies between 63.2 and 67.8 kJ/mol, depending on GP concentration. In the low temperature regime, an Arrhenius plot resulted in negative activation energies of −75.8 and −64.4 kJ/mol in the presence of 10 and 15 mM GP, respectively. With an increase in both GP concentration and temperature, the gelatin network gradually shifted from being dominated by hydrogen bonds (physical crosslinks) to covalent crosslinking (chemical crosslinks).  相似文献   

11.
When adding beta-glycerophosphate (beta-GP), a weak base, to chitosan aqueous solutions, the polymer remains in solution at neutral pH and room temperature, while homogeneous gelation of this system can be triggered upon heating. It is therefore one of the rare true physical chitosan hydrogels. In this study, physicochemical and rheological properties of chitosan solutions in the presence of acetic acid and beta-GP were investigated as a function of temperature in order to gain a better understanding of the gelation mechanisms. The gel structure formed at high temperature was only partially thermoreversible upon cooling to 5 degrees C because of the existence of remaining associations, confirmed by the spontaneous recovery of the gel after breakup at low temperature. Increasing temperature had no effect on the pH values of this system, while conductivity (and calculated ionic strength) increased. Values from the pH measurements were used to estimate the degree of protonation of each species as a function of temperature. The decreasing ratio of -NH3+ in chitosan and -OPO(O-)2 in beta-GP suggested reduced chitosan solubility along with a diminution of ionic interactions such as ionic bridging with increasing temperature. On the other hand, the increased ionic strength as a function of temperature, in the presence of beta-GP, enhanced screening of electrostatic repulsion and increased hydrophobic effect, resulting in favorable conditions for gel formation. Therefore, our study suggests that hydrophobic interactions and reduced solubility are the main driving force for chitosan gelation at high temperature in the presence of beta-GP.  相似文献   

12.
Mechanical properties of a polyacrylamide gel with reversible DNA crosslinks are presented. In this system, three DNA strands replace traditional chemical crosslinkers. In contrast to thermoset chemically crosslinked polyacrylamide, the new hydrogel is thermoreversible; crosslink dissociation without the addition of heat is also feasible by introducing a specific removal DNA strand. This hydrogel is characterized by a critical crosslink concentration at which gelation occurs. Below the critical point, a characteristic temperature exists at which a transition in viscosity is observed. Both temperature-dependent viscosity and elastic modulus of the material are functions of crosslink density.  相似文献   

13.
Self-assembly of extended structures via cross-linking of individual biomolecules often occurs in solutions at concentrations well below the estimated threshold for random cross-link percolation. This requires solute-solute correlations. Here we study bovine serum albumin. Its unfolding causes the appearance of an instability region of the sol, not observed for native bovine serum albumin. As a consequence, spinodal demixing of the sol is observed. The thermodynamic phase transition corresponding to this demixing is the determinative symmetry-breaking step allowing the subsequent occurrence of (correlated) cross-linking and its progress up to the topological phase transition of gelation. The occurrence of this sequence is of marked interest to theories of spontaneous symmetry-breaking leading to morphogenesis, as well as to percolation theories. The present results extend the validity of conclusions drawn from our previous studies of other systems, by showing in one single case, system features that we have hitherto observed separately in different systems. Time-resolved experimental observations of the present type also bring kinetic and diffusional processes and solute-solvent interactions into the picture of cross-link percolation.  相似文献   

14.
The sol of konjac mannan (KM) was gelatinized with an alkali such as sodium carbonate. The turbidity and the viscosity of sol, the infrared spectra of KM, and the consumption of alkali by KM in the course of gelation were measured. Then, experiments were undertaken in order to elucidate the major role of alkalies in gelation and the mechanism of gel-formation. It was presumed that the alkalies eliminate a moiety containing C=O group (probably an organic acid) from KM, and then the molecules of KM which lost the moiety crystallize in part through a linkage such as hydrogen bonding, and a network structure is formed.  相似文献   

15.
Effect of degree of acetylation on gelation of konjac glucomannan   总被引:3,自引:0,他引:3  
Effect of the degree of acetylation (DA) on the gelation behaviors on addition of sodium carbonate for native and acetylated konjac glucomannan (KGM) samples with a DA range from 1.38 to 10.1 wt % synthesized using acetic anhydride in the presence of pyridine as catalyst was studied by dynamic viscoelastic measurements. At a fixed alkaline concentration (CNa), both the critical gelation times (tcr) and the plateau values of storage moduli (G'sat) of the KGM gels increased with increasing DA, while at a fixed ratio of alkaline concentrations to values of DA (CNa/DA), similar tcr and values independent of DA were observed. On the whole, increasing KGM concentration or temperature shortened the gelation time and enhanced the elastic modulus for KGM gel. The effect of deacetylation rate related to the CNa/DA on the gelation kinetics of the KGM samples was discussed.  相似文献   

16.
Individual colonies of micrococcus euryhalis and of a marine bacterial isolate were grown in pour tubes under hydrostatic pressure. The medium was prepared in a silica sol, and gelation was effected at 4 degrees C by addition of salts to achieve concentrations found in seawater.  相似文献   

17.
Individual colonies of micrococcus euryhalis and of a marine bacterial isolate were grown in pour tubes under hydrostatic pressure. The medium was prepared in a silica sol, and gelation was effected at 4 degrees C by addition of salts to achieve concentrations found in seawater.  相似文献   

18.
The hydrogels assembled from a pair of self-repulsive but mutually attractive decapeptides are visualized by magnetic resonance imaging (MRI). It is found that in the absence of Gd(III)-chelate, gelation has little effect on MRI signal intensity. In the presence of Gd(III)-chelate, gelation leads to significant changes in water relaxation and MR signal intensity. The sol to gel transition is best visualized by T2-weighted imaging using large echo time with the sol producing a bright spot and the gel producing a dark spot. MRI studies point to high local Gd(III)-chelate concentration. Small-angle X-ray scattering study indicates that this local enrichment of Gd(III)-chelate has two contributing processes: first, the aggregation of peptides into fibers; second, within peptide fibers, Gd(III)-chelate further aggregate into clusters. This work demonstrates that the status of peptide-based hydrogels can be visualized by MRI with the aid of covalently linked Gd(III)-chelates. This result has implications for monitoring peptide scaffolds in vivo.  相似文献   

19.
Cytochalasin B and the structure of actin gels   总被引:36,自引:0,他引:36  
We analyzed the structure of gels formed when macrophage actin-binding protein crosslinks skeletal muscle actin polymers and the effect of the fungal metabolite cytochalasin B on this structure. Measurement of the actin filament length distribution permitted calculation of the critical concentration of crosslinker theoretically required for gelation of actin polymer networks. The experimentally determined critical concentration of actin-binding protein agreed sufficiently with the theoretical to conclude that F-actin-actin-binding protein gels are networks composed of isotropically oriented filaments crosslinked at intervals. The effects of cytochalasin B on these actin networks fits this model. Cytochalasin B (1) bound to F-actin (but not to actin-binding protein), (2) decreased the length of actin filaments without increasing the quantity of monomeric actin, (3) decreased the rigidity of actin networks both in the presence and absence of crosslinking proteins and (4) increased the critical concentration of actin-binding protein required for incipient gelation by a magnitude predicted from network theory if filaments were divided and shortened by the extents observed. The effects of cytochalasin B on gelation were highly dependent on actin concentration and were inhibited by the actin-stabilizing agent phalloidin. Therefore, cytochalasin B diminishes actin gel structure by severing actin filaments at limited sites. The demonstration of gel-sol transformations in actin networks caused by limited actin filament cleavage suggests a new mechanism for the control of cytoplasmic structure.  相似文献   

20.
Oscillatory shear rheometry has been used to study the gelation of beta-lactoglobulin at ambient in 50% v/v trifluoroethanol (TFE)/pH 7 aqueous buffer and in 50% v/v ethanol (EtOH)/water at pH 2. In contrast to what was found on heating aqueous solutions at pH 2 (Part 2 of this series), a more expected "chemical gelation"-like profile was found with modulus components G' and G' ' crossing over as the gels formed and then with G' ' passing through a maximum. In addition, for the EtOH system, there was a significant modulus increase at long time, suggestive of a more complex two-step aggregation scheme. Modulus-concentration relationships were obtained for both systems by extrapolating cure data to infinite time. For the TFE gels, this data was accurately described by classical branching theory, although it could also be approximated by a constant power--law relationship. Only the latter described the modulus--concentration data for the gels in ethanol, but there were problems here of greater frequency dependence of the modulus values and much less certain extrapolation. Gel times for the TFE systems showed higher power laws in the concentration than could be explained by the branching theory in its simplest form being similar, in this respect, to the heat-set systems at pH 2. Such power laws were harder to establish for the EtOH gels as for these there was evidence of gel time divergence close to a critical concentration. Reduced G'/G'inf versus t/tgel data were difficult to interpret for the gels in ethanol, but for the TFE system they were consistent with previous results for the heat-set gels and approximated master curve superposition. The frequency and temperature dependences of the final gel moduli were also studied. In general, the networks induced by alcohols appeared more flexible than those obtained by heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号