首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutaraldehyde is widely used to chemically fix lungs for analysis of pulmonary structure-function relations. Accurate interpretation of observations on fixed tissue requires a clear definition of any artifacts, such as tissue shrinkage, resulting from fixation with glutaraldehyde. Two experimental procedures were used in this study to examine possible shrinkage artifacts resulting from fixation of lung by glutaraldehyde. In the first, isolated perfused dog lungs were rapidly frozen at different transpulmonary pressures. Samples were then freeze substituted at -50 degrees C using 70% ethylene glycol with and without fixatives present. In the second series of experiments, the left lungs of mongrel dogs were fixed by vascular perfusion with glutaraldehyde at different transpulmonary pressures. In both series of experiments any changes in linear dimensions resulting from the fixation procedure were measured. Also, the presence of aldehyde was demonstrated by a positive reaction with Schiff reagent. The results demonstrate that lung tissue fixed either by vascular perfusion or freeze substitution tends to shrink to about the same extent. This shrinkage is reasonably constant at about 9% for transpulmonary pressures of 5 and 15 cmH2O and increases to about 15% when the transpulmonary pressure reaches 25 cmH20.  相似文献   

2.
Theoretical and practical aspects of glutaraldehyde fixation   总被引:12,自引:0,他引:12  
Synopsis This review first considers the many structures put forward for glutaraldehyde, and the purification of the commercial material for chemical, histological and histochemical studies. Some practical and theoretical problems of tissue fixation with glutaraldehyde, including artefacts, are then discussed. The chemical reactions with amino acids and proteins are considered next together with the physical changes in the proteins during the reactions. The known reactions of glutaraldehyde with nucleic acids, lipids and mucosubstances are explored briefly.  相似文献   

3.
Summary Freeze-fracture replicas of the neuromuscular junction were prepared from untreated retractor unguis muscles of the locust Schistocerca gregaria that were rapidly frozen by contact with a copper block cooled by liquid helium. These replicas were compared with others prepared from tissue following fixation with glutaraldehyde and cryoprotection in glycerol. Freeze-fracture of rapidly frozen tissue produced replicas of high quality with little evidence of tissue damage by ice crystals in the superficial layers. The gross fracturing characteristics of the neuromuscular junction were consistent with replicas from fixed and cryoprotected tissue; all of the membrane specializations were recognisable but with some alterations in infrastructure. In tissue replicas prepared using either method intramembranous particles in the presynaptic membrane were arranged in a bar-like array. The intramembranous particles of this presynaptic bar array of the rapidly frozen material were large and found on the E-face of the cleaved membrane. This contrasts with the P-face distribution of the comparable particles in muscles fixed in glutaraldehyde and cryoprotected in glycerol, in which they are also smaller and more numerous. This difference in partitioning between rapidly frozen, and fixed, cryoprotected nerve terminals is not found at cholinergic synapses and thus may reflect functional differences between the two types of junction.Indentations of the nerve-terminal membrane occur in replicas from rapidly frozen muscle as well as fixed and cryoprotected muscle suggesting they are not fixation or glycerol-induced artifacts. It is suggested from their position and size that these indentations are more likely to be part of a membrane retrieval system than exocytotic figures.This work was supported by an S.E.R.C. project grant to I.R.D.  相似文献   

4.
In spite of the inherent limitations of chemical fixation, glutaraldehyde is unsurpassed in its ability to preserve cell ultrastructure. This achievement is due to the introduction of irreversible intra-and intermolecular cross-links into cellular proteins by the dialdehyde. Glutaraldehyde is very effective in stabilizing surface as well as intracellular structures for conventional scanning and transmission electron microscopy and high voltage electron microscopy. Even in immunocytochemical and autoradiographical studies, glutaradehyde plays a dominant role. Furthermore, prior to freeze-substitution, freeze-drying and freeze-fracturing, specimens often are stabilized with this dialdehyde. Glutaraldehyde efficiency can be increased by adding appropriate cross-linking and rapidly penetrating reagents as well as contrast enhancing reagents to this dialdehyde. Improved preservation and staining, for example, of ionic sites, soluble inorganic phosphate, lipids, biogenic amines, actin filaments, spermatozoa and phage-infected bacteria can be accomplished by adding polyethyleneimine, lead acetate, malachite green, potassium dichromate, tannic acid, trinitro compounds and uranyl acetate, respectively, to glutaraldehyde. Other refinements include the use of low concentrations of glutaraldehyde, short durations of cross-linking, minimum radiation exposure, and low temperature electron microscopy. The usefulness of glutaraldehyde in high resolution electron microscopy is limited because chemical fixation inevitably causes chemical and structural alterations in the specimen. However, fixation with glutaraldehyde or its mixture with formaldehyde has served immeasurably the progress in the understanding of cell ultrastructure and function. Preservation of specimens with glutaraldehyde for electron microscopy is expected to continue. Therefore, attempts must continue to be made to interpret the dynamics of the living cell from the static electron micrographs.  相似文献   

5.
The influence of the O(2) and CO(2) concentration and the temperature on the O(2) uptake rate of cool-stored intact pears and pear cell protoplasts in suspension was compared. Protocols to isolate pear cell protoplasts from pear tissue and two methods to measure protoplast respiration have been developed. Modified Michaelis-Menten kinetics were applied to describe the effect of the O(2) and the CO(2) concentration on the O(2) uptake rate and temperature dependence was analysed with an Arrhenius equation. Both systems were described with a non-competitive type of CO(2) inhibition. Due to the inclusion of gas diffusion properties, the Michaelis-Menten constant for intact pears (2.5 mM) was significantly larger than the one for protoplasts in suspension (3 microM), which was in turn larger than the Michaelis-Menten constant obtained in mitochondrial respiration measurements described in the literature. It was calculated that only 3.6% of the total diffusion effect absorbed in the Michaelis-Menten constant for intact pears, could be attributed to intracellular gas diffusion. The number of cells per volume of tissue was counted microscopically to establish a relationship between the pear cell protoplast and intact pear O(2) uptake rate. A remarkable similarity was observed: values of 61.8 nmol kg(-1) s(-1) for protoplasts and 87.1 nmol kg(-1) s(-1) for intact pears were obtained. Also, the inhibitory effect of CO(2) on the respiration rate was almost identical for protoplasts and intact pears, suggesting that protoplast suspensions are useful for the study of other aspects of the respiration metabolism.  相似文献   

6.
It NO has been shown play to the primary role in several mitochondrial functions. Our aim for this study was to investigate whether exogenous NO (L-arginine) or NO blocker L-NNA modulated the adaptive reactions of rat myocardial tissue respiration on intermittent hypoxic training (IHT). In the control rats an acute hypoxic test (inhalation of 7% O2, 30 min) provoked sharp augmentation of ADP-stimulated tissue respiration with the increase of respiratory coefficient and phosphorylation rate, the decrease of O2 uptake efficacy and switching the energy supply to succinate oxidation pathway. The same hypoxic test but following 14 days of IHT (11% O2, 15-min sessions with 15 min rest intervals, 5 times daily) produced a stimulation of oxidative phosphorylation with primary activation of NAD-dependent pathway, the marked increase of ADP/O ratio. The combination of IHT with L-arginine treatment (600 mg/kg intraperitoneally, daily before IHT sessions) provoked the decrease of tissue oxygen consumption in comparison with untrained animals. L-arginine effects abolished by the NO-synthase blocker L-NNA. Its effects on mitochondrial function deals with succinic acid inhibition utilizatin (increasing level ADP/O) and activation NADH-dependent oxidation. We conclude that the combination of IHT with NO-precursor treatment was capable to increase significantly the tolerance to episodes of acute hypoxia.  相似文献   

7.
An investigation was designed to evaluate the effects of three different fixation regimes on the retention of serotonin-like immunoreactivity in rat midbrain tissue sections. The effects of pretreatment with pargyline-HCl and l-tryptophan on the volume fraction of serotonin-like immunoreactive processes were also examined. Rat brain tissue was fixed with 4% paraformaldehyde (Pf), 4% paraformaldehyde-0.2% picric acid-0.05% glutaraldehyde (Pf-Pa-G), or 4% paraformaldehyde-0.2% glutaraldehyde (Pf-G). Tissue was subsequently processed for immunohistochemistry using a modified peroxidase-antiperoxidase technique and quantified at the light microscopic level by point counting. Fixation with Pf resulted in higher volume fraction determinations of axonal serotonin immunoreactivity than did fixation with Pf-Pa-G or Pf-G. These results provide quantitative data which indicate that even low levels of glutaraldehyde in the fixative significantly decrease serotonin immunoreactivity. Pretreatment with pargyline and tryptophan increased the amount of serotonin immunoreactivity in tissue fixed with Pf-G but not in tissue fixed with Pf. Pretreatment with pargyline and tryptophan is thus recommended when using glutaraldehyde in the fixation process to assure adequate serotonin immunoreactivity. Pretreatment in conjunction with glutaraldehyde fixation, however, appears to cause differential increases in serotonin-like immunoreactivity within brain nuclei that may compromise the interpretation of results.  相似文献   

8.
The degree of infiltration of epoxy resin into pituitary secretory granules was evaluated using X-ray microanalysis of the concentrations of chlorine in the epoxy resins. The effectiveness of infiltration was tested after three different tissue preparation techniques: cryofixation + freeze-drying (CF-FD), glutaraldehyde fixation (GF) + chemical dehydration, and no fixation— no dehydration. Signs of marked incomplete infiltration were found in embedded unfixed tissue while the other two techniques showed 80% infiltration. Uneven penetration was seen after CF-FD and GF. The plastic surface demonstrated a mountain-like appearance over the secretory granules after immunocytochemistry of the glutaraldehyde fixed tissue, whereas the CF-FD tissue showed a less furrowed surface. This probably is due to contact with water, which swells those parts of the granules that are unprotected by the plastic embedding medium. Our findings may explain why it is possible to perform immunocytochemistry on Epon embedded tissue.  相似文献   

9.
The lacrimal gland (Glandula orbitalis externa) of rat contains both peroxidase and catalase and was used as a model for biochemical and cytochemical distinction between peroxidase and catalase. Both enzymes were isolated by ammonium sulfate precipitation from tissue homogenates, and the effects of fixation with glutaraldehyde and various conditions of incubation were investigated colorimetrically using DAB as hydrogen donor. The lacrimal gland peroxidase is strongly inhibited by glutaraldehyde treatment. In contrast, for catalase the fixation with glutaraldehyde is the prerequistie for demonstration of its peroxidatic activity. The maximal peroxidatic activity was obtained after treatment of catalase with 3% glutaraldehyde, higher concentrations being inhibitory. For lacrimal gland peroxidase, the maximal rate of oxidation of DAB is at pH 6.5, whereas for catalase it is at pH 10.5. The optimal concentration of H2O2 for lacrimal gland peroxidase is at 10(-3)M and for peroxidatic activity of catalase at 10(-1)M. These optimal conditions obtained biochemically were applied to tissue sections of rat lacrimal gland. After the fixation of tissue with a low concentration of glutaraldehyde and incubation in the DAB medium at neutral pH containing 10(-3)M H2O2 (Peroxidase medium), the reaction product was localized in the cisternae of the rough endoplasmic reticulum, in elements of the Golgi apparatus, and in secretory granules. After the fixation of tissue with 3% glutaraldehyde and incubation in the DAB-medium containing 10(-1)M H2O2 and at pH 10.5 (catalase medium), the staining in the endoplasmic reticulum, the Golgi-apparatus and in secretory granules was completely inhibited and reaction product was localized exclusively in small (0.2-0.5 mu) particles similar to small peroxisomes described in various other cell-types.  相似文献   

10.
Summary Swelling of Golgi apparatus cisternae is reported to be a common response to the ionophore, monensin. However, the amount of swelling depends on fixation, thus raising the question of whether the swelling response is due to monensin or to the fixation protocol. To resolve this problem, maize root cap cells were treated with monensin and then fixed with glutaraldehyde and osmium tetroxide (applied sequentially), osmium tetroxide alone, or aqueous potassium permanganate, or were quick frozen in liquid propane and substituted in acetone-osmium tetroxide. The chemical fixatives (which take minutes to stabilize tissue elements) were judged by comparison with freeze substitution which requires only fractions of a second to stabilize tissue elements. The results verify that monensin causes cisternal swelling and that this swelling is best observed at the ultrastructural level by fixation in glutaraldehyde/osmium tetroxide or by freeze substitution.  相似文献   

11.
Sodium pyruvate and dinitrophenol stimulated O(2) uptake of freshly cut phloem parenchyma from carrot roots by 63 and 120% at optimal concentrations, indicating that production of pyruvate by glycolysis regulates over-all respiratory rate. Adding 0.5 to 6.7 mm Na(3)ADP and Na(3)ATP to slices rapidly stimulates respiration rate by 20 to 85%. The effect is greater at the lower end of this concentration range and is not due to change in pH or active cation uptake. It is suggested that treating tissue with both nucleotides stimulates pyruvate kinase, the rate-limiting step in respiration of freshly cut slices, by increasing the concentration of endogenous ADP. Adenosine diphosphate continued to stimulate O(2) uptake until the peak of induced respiration, but ATP inhibited respiration during development and decline of this peak. Absence of respiratory stimulation by NaH(2)PO(4) and of respiratory inhibition by added nucleosides confirms that inorganic phosphate is not a limiting factor of respiration in freshly cut slices. The stimulation of respiration rate of these slices by dinitrophenol is consistent with results from experiments in which ADP and ATP were applied to the tissue.  相似文献   

12.
Reactions of nucleophilic substitution and enzymatic processes involving metalloporphirins (MP) are considered in terms of coordination of zinc(II)tetraphenylporphine (Zn-TPhP) with corresponding ligands/nucleophiles/substrates/bases. Linear correlations are performed between kinetic parameters of the Zn-TPhP coordination processes in chloroform (stability constants) and reactions of nucleophilic substitution both in aqueous and organic solvents involving pyridines, pyridine N-oxides, anilines, primary amines, as well as in reactions of oxidation of anilines with horseradish peroxidase in aqueous media (rate constants). Thermodynamic parameters of the complex formation and nucleophilic substitution linearly correlate with each other in the case of pyridines, anilines, and primary amines.  相似文献   

13.
Antigen retrieval (AR) methods can unmask tissue antigens that have been altered by fixation, processing, storage, or resin interactions. This is particularly important in the study of archival tissues, because primary fixatives and storage times may vary among specimens. We performed an electron microscopic study of basement membrane components of the aqueous humor drainage pathways from archival eye tissue. AR (heated citrate buffer, pH 6.0, LR White resin) increased the amount of label of collagen IV and fibronectin in tissue fixed in four different fixatives, including those containing glutaraldehyde. Labeling density was approximately doubled after AR for most fixatives, with the largest increase for tissues fixed in 4% paraformaldehyde/2% glutaraldehyde. Duration of storage time for archival tissues did not affect AR results. AR did not change the components of the extracellular matrix labeled; no "new" components were labeled after AR. We conclude that AR in citrate buffer can be used on selected extracellular matrix antigens to enhance label that would otherwise be lost due to fixation and storage.  相似文献   

14.
Callose deposition at plasmodesmata   总被引:4,自引:0,他引:4  
Summary The transport of ions and metabolites through plasmodesmata has been thought to be controlled at the neck region where the cytoplasmic annulus is constricted and where callose has also been localised. In order to determine the possible structural and functional effects of callose, its deposition was inhibited through incubation of the plant tissue with 2-deoxy-D-glucose (DDG) for 1 h prior to fixation in 2.5% glutaraldehyde. The inhibition of callose formation was monitored through aniline blue-induced fluorescence of callose. The neck region of the plasmodesmata fromAllium cepa L. roots treated with DDG exhibited a funnel-shaped configuration. This is in contrast to the plasmodesmata from tissue not incubated with DDG, which exhibited constricted necks similar to those previously reported. Both initial dissection and glutaraldehyde fixation induced neck constriction in plasmodesmata, however, dissection of tissue increased the frequency of constrictions. The inhibition of callose formation by chemical means showed that the neck constrictions and raised collars in this area are artefacts due to physical wounding and glutaraldehyde fixation. The external electron-dense material observed when tannic acid is included in the primary fixative appears to be unrelated to the deposition of callose at the neck region.Abbreviations DDG 2-deoxy-D-glucose  相似文献   

15.
Azorhizobium caulinodans employs both cytochrome bd (cytbd; quinol oxidase) and cytcbb3 (cytc oxidase) as terminal oxidases in environments with very low O2 concentrations. To investigate physiological roles of these two terminal oxidases both in microaerobic culture and in symbiosis, knockout mutants were constructed. As evidenced by visible absorbance spectra taken from mutant bacteria carrying perfect gene replacements, both the cytbd- and cytcbb3- mutations were null alleles. In aerobic culture under 2% O2 atmosphere, Azorhizobium cytbd- and cytcbb3- single mutants both fixed N2 at 70 to 90% of wild-type rates; in root nodule symbiosis, both single mutants fixed N2 at 50% of wild-type rates. In contrast, Azorhizobium cytbd- cytcbb3-double mutants, which carry both null alleles, completely lacked symbiotic N2 fixation activity. Therefore, both Azorhizobium cytbd and cytcbb3 oxidases drive respiration in environments with nanomolar O2 concentrations during symbiotic N2 fixation. In culture under a 2% O2 atmosphere, Azorhizobium cytbd- cytcbb3- double mutants fixed N2 at 70% of wild-type rates, presumably reflecting cytaa3 and cytbo (and other) terminal oxidase activities. In microaerobic continuous cultures in rich medium, Azorhizobium cytbd- and cytcbb3- single mutants were compared for their ability to deplete a limiting-O2 sparge; cytbd oxidase activity maintained dissolved O2 at 3.6 microM steady state, whereas cytcbb3 oxidase activity depleted O2 to submicromolar levels. Growth rates reflected this difference; cytcbb3 oxidase activity disproportionately supported microaerobic growth. Paradoxically, in O2 limited continuous culture, Azorhizobium cytbd oxidase is inactive below 3.6 microM dissolved O2 whereas in Sesbania rostrata symbiotic nodules, in which physiological, dissolved O2 is maintained at 10 to 20 nM, both Azorhizobium cytbd and cytcbb3 seem to contribute equally as respiratory terminal oxidases.  相似文献   

16.
The photochemical activities of various species of unicellular algae (Anacystis nidulans, Chlorella pyrenoidosa, and Porphyridium cruentum) were studied following chemical fixation. Fixation with formaldehyde and glutaraldehyde yielded cells which retained their ability to perform photosystem I and photosystem II reactions. The photochemical efficiencies of some fixed algae are as great as those of unfixed spinach chloroplasts. Fixed algae containing accessory pigments appear to be useful models for further studies of the light reactions of photosynthesis.  相似文献   

17.
The effect of inert helium and argon gases on the tissue respiration has been studied on lymphocyte suspensions of white rats. It is shown that normoxic helium-oxygen mixture induces almost a two-fold increase of the O2 uptake by lymphocytes as compared with the control (air). No deviations in the value of the studied parameter are revealed in case of replacement of nitrogen from air by argon. Significance of the membrane structure in realization of effects of inert gases is under discussion.  相似文献   

18.
The surface charge of cultured neurons was investigated with the electron microscope markers anionized ferritin (AF) and cationized ferritin (CF). To determine which membrane components could react with the markers, model reactions were used. Both protein-coated Sepharose beads and lipid vesicles were reacted at physiological pH. Results with these model reactions indicate that the following groups may contribute to the surface charge: acidic groups--the sialic acid of both glycoproteins and gangliosides, the carboxyl group of proteins, and the phosphates of phospholipids; basic groups--the amines of proteins. The effect of chemical fixation on the surface charge was investigated. Glutaraldehyde fixation was shown to increase the charge of neutral proteins but not by a mechanism involving unbound aldehydes. Glutaraldehyde fixation of phospholipid vesicles in the presence of CF showed that amine-containing phospholipids were cross-linked to CF. This cross-linkage was seen with the electron microscope as the clumping of CF and the burying of CF in the membrane. Paraformaldehyde fixation had a lesser effect on the charge of proteins but did react with phospholipids as did glutaraldehyde. It is concluded that at physiological pH: (a) most of the charged proteins and lipids on cell surface can contribute to the membrane surface charge, and (b) the membrane surface charge of cells can be greatly changed by chemical fixation.  相似文献   

19.
The simultaneous localization of proteoglycan by light and electron microscopy was demonstrated by fixing epiphyseal cartilage in a glutaraldehyde toluidine blue O solution. Sections cut for light microscopy viewing and those cut for electron microscopy required no further staining, although, in the latter case, staining with uranyl acetate and lead improved the overall contrast. By this technique, electron-dense structures were seen concentrated about the cells which were actively synthesizing matrix, and these structures appeared to bind collagen fibrils. Similar structures were not seen in conventionally fixed tissue. They could also not be identified when the specimens were previously incubated with the proteoglycan-digesting enzyme, papain, prior to toluidine blue O fixation. The toluidine blue O fixation method, unlike conventional fixation and staining, retained proteoglycan in the pericellular areas of actively synthesizing cells and made it visible by light and electron microscopy. It appears that proteoglycans is both precipitated and stained by the presence of toluidine blue O during fixation.  相似文献   

20.
The effect of the partial pressure of oxygen (PO2) on the formation of vesicles, which are thought to be the site of N2 fixation in Frankia, was studied in HFPCcI3, an effective isolate from Casuarina cunninghamiana. Unlike other actinorhizal root nodules, vesicles are not produced by the endophyte in Casuarina nodules. However, in culture under aerobic conditions, large, phase-bright vesicles are formed in HFPCcI3 within 20 h following removal of NH+4 from the culture medium and reach peak numbers within 72 to 96 h. In vivo acetylene reduction activity parallels vesicle formation. Optimum rates of acetylene reduction in short-term assays occurred at 20% O2 (0.2 atm (1 atm = 101.325 kPa] in the gas phase. O2 uptake (respiration) determined polarographically showed diffusion-limited kinetics and remained unsaturated by O2 until 300 microM O2. In contrast, respiration in NH+4-grown cells was saturated by O2 between 8 and 10 microM O2. These results indicate the presence of a diffusion barrier associated with the vesicles. Vesicle development was repressed in cells incubated in N-free media sparged with gas mixtures with PO2 between 0.001 and 0.003 atm. Nitrogenase was induced under these conditions, but acetylene reduction was extremely O2 sensitive. The kinetics of O2 uptake as a function of dissolved O2 concentration in avesicular cells were similar to those in NH+4-grown cells indicating the lack of a diffusion barrier. These results demonstrate that vesicle formation and the development of the O2 protection mechanisms of nitrogenase are regulated by ambient PO2 in HFPCcI3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号