首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Schöneich S  Hedwig B 《PloS one》2010,5(12):e15141

Background

Auditory mate or prey localisation is central to the lifestyle of many animals and requires precise directional hearing. However, when the incident angle of sound approaches 0° azimuth, interaural time and intensity differences gradually vanish. This poses a demanding challenge to animals especially when interaural distances are small. To cope with these limitations imposed by the laws of acoustics, crickets employ a frequency tuned peripheral hearing system. Although this enhances auditory directionality the actual precision of directional hearing and phonotactic steering has never been studied in the behaviourally important frontal range.

Principal Findings

Here we analysed the directionality of phonotaxis in female crickets (Gryllus bimaculatus) walking on an open-loop trackball system by measuring their steering accuracy towards male calling song presented at frontal angles of incidence. Within the range of ±30°, females reliably discriminated the side of acoustic stimulation, even when the sound source deviated by only 1° from the animal''s length axis. Moreover, for angles of sound incidence between 1° and 6° the females precisely walked towards the sound source. Measuring the tympanic membrane oscillations of the front leg ears with a laser vibrometer revealed between 0° and 30° a linear increasing function of interaural amplitude differences with a slope of 0.4 dB/°. Auditory nerve recordings closely reflected these bilateral differences in afferent response latency and intensity that provide the physiological basis for precise auditory steering.

Conclusions

Our experiments demonstrate that an insect hearing system based on a frequency-tuned pressure difference receiver achieves directional hyperacuity which easily rivals best directional hearing in mammals and birds. Moreover, this directional accuracy of the cricket''s hearing system is reflected in the animal''s phonotactic motor response.  相似文献   

3.
P. HANSEN 《Bioacoustics.》2013,22(4):291-302
ABSTRACT

Although much research has been done to describe the degradation of sound signals propagating in natural habitats, the directional cues of sound have so far been neglected. This paper describes a first approach to quantifying the degradation of directional cues in sound propagating parallel to the ground in a grassland habitat of orthopteran insects. A matched pair of probe microphones measured the sound amplitude and phase close to the ears of grasshopper carcasses for 12 evenly spaced directions of sound incidence. The degradation was found to increase with frequency and distance from the sound source and to decrease with distance from the ground. The acoustical data were used to predict how well animals with different auditory systems can determine the direction of the sender. At one position in the habitat, the predictions were compared with the pattern of phonotactic responses of live grasshoppers. Amplitude cues appear to degrade much faster with distance than phase cues. Animals exploiting phase cues may therefore maintain a reasonable directional hearing when the amplitude cues no longer make sense. The pressure-difference-receiver type of ears responds to phase differences, and these ears may be particularly suited to overcoming the degradation of directional cues. This suggests that the possession of such ears may be an adaptation not only to small body size (relative to wavelength), but also to the acoustic properties of the habitat.  相似文献   

4.
Summary The directionality of cochlear microphonic potentials in the azimuthal plane was investigated in the pigeon (Columba livia), using acoustic free-field stimulation (pure tones of 0.25–6 kHz).At high frequencies in the pigeon's hearing range (4–6 kHz), changing azimuth resulted in a maximum change of the cochlear microphonic amplitude by about 20 dB (SPL). The directionality decreased clearly with decreasing frequency.Acoustic blocking of the contralateral ear canal could reduce the directional sensitivity of the ipsilateral ear by maximally 8 dB. This indicates a significant sound transmission through the bird's interaural pathways. However, the magnitude of these effects compared to those obtained by sound diffraction (maximum > 15 dB) suggests that pressure gradients at the tympanic membrane are only of subordinate importance for the generation of directional cues.The comparison of interaural intensity differences with previous behavioral results confirms the hypothesis that interaural intensity difference is the primary directional cue of azimuthal sound localization in the high-frequency range (2–6 kHz).Abbreviations CM cochlear microphonic potential - IID interaural intensity difference - IID-MRA minimum resolvable angle calculated from interaural intensity difference - MRA minimum resolvable angle - OTD interaural ongoing time difference - RMS root mean square - SPL sound pressure level  相似文献   

5.
In many birds, the middle ears are connected through an air-filled interaural pathway. Sound transmission through this pathway may improve directional hearing. However, attempts to demonstrate such a mechanism have produced conflicting results. One reason is that some species of birds develop a lower static air pressure in the middle ears when anaesthetized, which reduces eardrum vibrations. In anaesthetized budgerigars with vented interaural air spaces and presumed normal eardrum vibrations, we find that sound propagating through the interaural pathway considerably improves cues to the directional hearing. The directional cues in the received sound combined with amplitude gain and time delay of sound propagating through the interaural pathway quantitatively account for the observed dependence of eardrum vibration on direction of sound incidence. Interaural sound propagation is responsible for most of the frontal gradient of eardrum vibration (i.e. when a sound source is moved from a small contralateral angle to the same ipsilateral angle). Our study confirms that at low frequencies the interaural sound propagation may cause vibrations of the eardrum to differ much in time, thus providing a possible cue for directional hearing. The acoustically effective size of the head of our birds (diameter 28 mm) is much larger than expected from the dimensions of the skull, so apparently the feathers on the head have a considerable acoustical effect.Dedicated to Professor Franz Huber on the occasion of his 80th birthday.  相似文献   

6.
Traditionally, the medial superior olive, a mammalian auditory brainstem structure, is considered to encode interaural time differences, the main cue for localizing low-frequency sounds. Detection of binaural excitatory and inhibitory inputs are considered as an underlying mechanism. Most small mammals, however, hear high frequencies well beyond 50 kHz and have small interaural distances. Therefore, they can not use interaural time differences for sound localization and yet possess a medial superior olive. Physiological studies in bats revealed that medial superior olive cells show similar interaural time difference coding as in larger mammals tuned to low-frequency hearing. Their interaural time difference sensitivity, however, is far too coarse to serve in sound localization. Thus, interaural time difference sensitivity in medial superior olive of small mammals is an epiphenomenon. We propose that the original function of the medial superior olive is a binaural cooperation causing facilitation due to binaural excitation. Lagging inhibitory inputs, however, suppress reverberations and echoes from the acoustic background. Thereby, generation of antagonistically organized temporal fields is the basic and original function of the mammalian medial superior olive. Only later in evolution with the advent of larger mammals did interaural distances, and hence interaural time differences, became large enough to be used as cues for sound localization of low-frequency stimuli. Accepted: 28 February 2000  相似文献   

7.
Auditory receptors of the locust (Locusta migratoria) were investigated with respect to the directionality cues which are present in their spiking responses, with special emphasis on how directional cues are influenced by the rise time of sound signals. Intensity differences between the ears influence two possible cues in the receptor responses, spike count and response latency. Variation in rise time of sound pulses had little effect on the overall spike count; however, it had a substantial effect on the temporal distribution of the receptor's spiking response, especially on the latencies of first spikes. In particular, with ramplike stimuli the slope of the latency vs. intensity curves was steeper as compared to stimuli with steep onsets (Fig. 3). Stimuli with flat ramplike onsets lead to an increase of the latency differences of discharges between left and right tympanic receptors. This type of ramplike stimulus could thus facilitate directional hearing. This hypothesis was corroborated by a Monte Carlo simulation in which the probability of incorrect directional decisions was determined on the basis of the receptor latencies and spike counts. Slowly rising ramps significantly improved the decisions based on response latency, as compared to stimuli with sudden onsets (Fig. 4). These results are compared to behavioural results obtained with the grasshopper Ch. biguttulus. The stridulation signals of the females of this species consist of ramplike pulses, which could be an adaptation to facilitate directional hearing of phonotactically approaching males.Abbreviations HFR high frequency receptor - ILD interaural level difference - LFR low frequency receptor - SPL sound pressure level - WN white noise  相似文献   

8.
Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope’s gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1–4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs.  相似文献   

9.
Abstract. The auditory system of three closely related bushcrickets was investigated with respect to morphological and physiological differences. The size of the acoustic vesicle in the prothorax cavity and the size of the acoustic spiracle were compared to differences in auditory tuning of the tympanic nerve and differences in the directionality. The results indicate that a small auditory vesicle and auditory spiracle provide reduced sensitivity in the high frequency range (above 10—15 kHz), but increase sensitivity at low frequencies (below 10 kHz). The directionality of the hearing system deteriorates at frequencies between 10 and 25 kHz in species with a small spiracle and trachea. The evolutionary implications of these differences of the auditory systems are discussed. They are considered to be influenced more by ecological factors than bioacoustical ones.  相似文献   

10.
In recent years, a great deal of research within the field of sound localization has been aimed at finding the acoustic cues that human listeners use to localize sounds and understanding the mechanisms by which they process these cues. In this paper, we propose a complementary approach by constructing an ideal-observer model, by which we mean a model that performs optimal information processing within a Bayesian context. The model considers all available spatial information contained within the acoustic signals encoded by each ear. Parameters for the optimal Bayesian model are determined based on psychoacoustic discrimination experiments on interaural time difference and sound intensity. Without regard as to how the human auditory system actually processes information, we examine the best possible localization performance that could be achieved based only on analysis of the input information, given the constraints of the normal auditory system. We show that the model performance is generally in good agreement with the actual human localization performance, as assessed in a meta-analysis of many localization experiments (Best et al. in Principles and applications of spatial hearing, pp 14–23. World Scientific Publishing, Singapore, 2011). We believe this approach can shed new light on the optimality (or otherwise) of human sound localization, especially with regard to the level of uncertainty in the input information. Moreover, the proposed model allows one to study the relative importance of various (combinations of) acoustic cues for spatial localization and enables a prediction of which cues are most informative and therefore likely to be used by humans in various circumstances.  相似文献   

11.
本文报道了利用神经生理学方法研究硕螽听觉中间神经元方向灵敏度的结果.  相似文献   

12.
Summary The physical measurements reported here test whether the European starling (Sturnus vulgaris) evaluates the azimuth direction of a sound source with a peripheral auditory system composed of two acoustically coupled pressure-difference receivers (1) or of two decoupled pressure receivers (2).A directional pattern of sound intensity in the freefield was measured at the entrance of the auditory meatus using a probe microphone, and at the tympanum using laser vibrometry. The maximum differences in the soundpressure level measured with the microphone between various speaker positions and the frontal speaker position were 2.4 dB at 1 and 2 kHz, 7.3 dB at 4 kHz, 9.2 dB at 6 kHz, and 10.9 dB at 8 kHz. The directional amplitude pattern measured by laser vibrometry did not differ from that measured with the microphone. Neither did the directional pattern of travel times to the ear. Measurements of the amplitude and phase transfer function of the starling's interaural pathway using a closed sound system were in accord with the results of the free-field measurements.In conclusion, although some sound transmission via the interaural canal occurred, the present experiments support the hypothesis 2 above that the starling's peripheral auditory system is best described as consisting of two functionally decoupled pressure receivers.Abbreviations CM cochlear microphonics - ITD interaural time difference - IID interaural intensity difference - MRA minimum resolvable angle - dB SPL sound-pressure level (re 0.00002 Pa)  相似文献   

13.
Summary The acoustical properties of the external ear of the barn owl (Tyto alba) were studied by measuring sound pressure in the ear canal and outer ear cavity. Under normal conditions, pressure amplification by the external ear reaches about 20 dB between 3–9 kHz but decreases sharply above 10 kHz. The acoustic gain curve of the outer ear cavity alone is close to that of a finite-length exponential horn between 1.2–13 kHz with maximum gain reaching 20 dB between 5–9 kHz. Pressure gain by the facial ruff produces a maximum of 12 dB between 5–8 kHz and decreases rapidly above 9 kHz.The directional sensitivity of the external ear was obtained from pressure measurements in the ear canal. Directivity of the major lobe is explained, to a first approximation, by the sound diffraction properties of a circular aperture. Aperture size is based on the average radius (30 mm) of the open face of the ruff. Above 5 kHz, the external ear becomes highly directional and there is a 26° disparity in elevation between the acoustic axis of the left and right ear. In azimuth, directivity patterns are relocated closer to the midline as frequency increases and the acoustic axis moves at a rate of 20°/octave between 2–13 kHz. Movement of the axis can be explained, to a first approximation, by the acoustical diffraction properties of an obliquely truncated horn, due to the asymmetrical shape of the outer ear cavity.The directional sensitivity of the barn owl ear was studied by recording cochlear microphonic (CM) potentials from the round window membrane. Between 3–9 kHz, CM directivity patterns are clearly different to the directivity patterns of the external ear; CM directionality is abruptly lost above 10 kHz. Above 5 kHz, CM directivity patterns are characterized by an elongated major lobe containing the CM axis, forming a tilted band of high amplitude but low directionality (CM axial plane), closely bordered by minima or nulls. The highest directionality is found in theCM directional plane, approximately perpendicular to the CM axial plane. The left and right ear axial planes are symmetrical about the interaural midline (tilted 12° to the right of the midline of the head) and inclined by an average of 60° to the left and right respectively. In azimuth, the CM axis moves towards the midline at a rate of 37°/octave as frequency increases from 2–9 kHz, crossing into contralateral space near 7 kHz. In the CM directional plane, the directivity of the major lobe suggests that a pressure gradient may occur at the TM. The region of frontal space mapped by movement of the CM axis in azimuth closely matches the angle of sound incidence which would be expected to produce the maximum driving pressure at the TM. It is suggested that acoustical interference at the TM results from sound transmission through the interaural canal and therefore the ear is inherently directional. It is proposed that ear directionality in the barn owl may be explained by the combined effect of sound diffraction by the outer ear cavity and a pressure gradient at the TM.Abbreviations CM cochlear microphonic - RMS root mean square - SPL sound pressure level - TM tympanic membrane  相似文献   

14.
Barn owls localize sound by using the interaural time difference of the horizontal plane and the interaural intensity difference for the vertical plane. The owl's auditory system possesses the two binaural cues in separate pathways in the brainstem. Owls use a process similar to cross-correlation to derive interaural time differences. Convergence of different frequency bands in the inferior colliculus solves the problems of phase-ambiguity which is inherent in cross-correlating periodic signals. The two pathways converge in the external nucleus of the inferior colliculus to give rise to neurons that are selective for combinations of the two cues. These neurons form a map of auditory space. The map projects to the optic tectum to form a bimodal map which, in turn, projects to a motor map for head turning. The visual system calibrates the auditory space map during ontogeny in which acoustic variables change. In addition to this tectal pathway, the forebrain can also control the sound-localizing behaviour.  相似文献   

15.
Children using unilateral cochlear implants abnormally rely on tempo rather than mode cues to distinguish whether a musical piece is happy or sad. This led us to question how this judgment is affected by the type of experience in early auditory development. We hypothesized that judgments of the emotional content of music would vary by the type and duration of access to sound in early life due to deafness, altered perception of musical cues through new ways of using auditory prostheses bilaterally, and formal music training during childhood. Seventy-five participants completed the Montreal Emotion Identification Test. Thirty-three had normal hearing (aged 6.6 to 40.0 years) and 42 children had hearing loss and used bilateral auditory prostheses (31 bilaterally implanted and 11 unilaterally implanted with contralateral hearing aid use). Reaction time and accuracy were measured. Accurate judgment of emotion in music was achieved across ages and musical experience. Musical training accentuated the reliance on mode cues which developed with age in the normal hearing group. Degrading pitch cues through cochlear implant-mediated hearing induced greater reliance on tempo cues, but mode cues grew in salience when at least partial acoustic information was available through some residual hearing in the contralateral ear. Finally, when pitch cues were experimentally distorted to represent cochlear implant hearing, individuals with normal hearing (including those with musical training) switched to an abnormal dependence on tempo cues. The data indicate that, in a western culture, access to acoustic hearing in early life promotes a preference for mode rather than tempo cues which is enhanced by musical training. The challenge to these preferred strategies during cochlear implant hearing (simulated and real), regardless of musical training, suggests that access to pitch cues for children with hearing loss must be improved by preservation of residual hearing and improvements in cochlear implant technology.  相似文献   

16.
Two potential sensory cues for sound location are interaural difference in response strength (firing rate and/or spike count) and in response latency of auditory receptor neurons. Previous experiments showed that these two cues are affected differently by intense prior stimulation; the difference in response strength declines and may even reverse in sign, but the difference in latency is unaffected. Here, I use an intense, constant tone to disrupt localization cues generated by a subsequent train of sound pulses. Recordings from the auditory nerve confirm that tone stimulation reduces, and sometimes reverses, the interaural difference in response strength to subsequent sound pulses, but that it enhances the interaural latency difference. If sound location is determined mainly from latency comparison, then behavioral responses to a pulse train following tone stimulation should be normal, but if the main cue for sound location is interaural difference in response strength, then post-tone behavioral responses should sometimes be misdirected. Initial phonotactic responses to the post-tone pulse train were frequently directed away from, rather than towards, the sound source, indicating that the dominant sensory cue for sound location is interaural difference in response strength.  相似文献   

17.
Summary Extracellular recordings were made from the midbrain auditory area to determine the limits of auditory frequency sensitivity in a variety of birds. The audiograms of some species show a consistent missing frequency range of 1/3 to 1/2 an octave, to which no neurons are tuned. All species, except owls, have a low upper frequency limit in comparison with mammals of similar headwidth. A consideration of both the upper frequency limits and the missing frequency ranges led to the conclusion that frequencies which do not generate localization cues are not represented in the midbrain. The upper frequency limit appears to match the upper limit of generation of significant interaural and monaural intensity cues to localization. The variation of these cues with frequency was examined through a simple model of the birds' sound receiving system which incorporated the interaural canal and considered the tympanic membranes as pressure difference receivers. Apart from coraciiform species, which have low upper frequency limits matching the frequency of the primary missing frequency band of other species, and owls, which have high upper frequency limits, the upper frequency limits of the birds studied are inversely related to head-width.The argument for missing frequency ranges being related to nonlocalizable frequencies is simpler, for it has been found previously, using cochlear microphonic recording, that within a bird's audiogram there are frequency regions with poor directionality cues. These regions appear to correspond to the missing frequency ranges.Abbreviation nMLD nucleus mesencephalicus lateralis dorsalis  相似文献   

18.
Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals.  相似文献   

19.
Animals such as bats and dolphins exhibit impressive echolocation abilities in terms of ranging, resolution and imaging and therefore represent a valuable learning model for the study of spatial hearing and sound source localization leading to a better understanding of the hearing mechanism and further improvement of the existing localization strategies. This study aims to examine and understand the directional characteristics of a sonar receiver modeled upon the bat auditory system via measurements of the head-related transfer function (HRTF) in the horizontal plane. Four different models of the bat head were considered here and used to evaluate acoustic spectral characteristics of the sound received by the bat's ears – a sphere model, a sphere model with a pinna attached (two pinnae of different size were used in this study) and a bat-head cast. The performed HRTF measurements of the bat-head models were further analyzed and compared to identify monaural spectral localization cues in the horizontal plane defined by the bat's head and pinna shape and size. Our study suggests that the acoustical characteristics of a bio-inspired sonar head measured and specified in advance can potentially improve the performance of a receiver. Moreover, the generated auditory models may hold clues for the design of receiver characteristics in ultrasound imaging and navigation systems.  相似文献   

20.
Features of sounds such as time and intensity are important binaural cues for localizing their sources. Interaural time differences (ITDs) and interaural level differences are extracted and processed in parallel by separate pathways in the brainstem auditory nuclei. ITD cues are small, particularly in small-headed animals, and processing of these cues is optimized by both morphological and physiological specializations. Moreover, recent observations in mammals and in some birds indicate that interaural time and level cues are not processed independently but cooperatively to improve the detection of interaural differences. This review will specifically summarize what is known about how inhibitory circuits improve the measurements of ITD in a sound-level-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号