首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of transformation on hexose and amino acid transport has been studied using whole cells and membrane vesicles of chicken embryo fibroblasts infected with the temperature-sensitive mutant of the Rous sarcoma virus, TS-68. In whole cells, TS-68-infected chicken embryo fibroblasts cultured at the permissive temperature (37°C) had a 2-fold higher rate of 2-deoxy-d-glucose uptake than the same cells cultured at the non-permissive temperature (41°C). However, both the non-transformed and transformed cells had comparable rates of α-aminoisobutyric acid transport. Membrane vesicles, isolated from TS-68-infected chicken embryo fibroblasts cultured at 41°C or 37°C, displayed carrier-mediated, intravesicular uptake of d-glucose and α-aminoisobutyric acid. Membrane vesicles from TS-68-infected chicken embryo fibroblasts cultured at 37°C had an approx. 50% greater initial rate of stereospecific hexose uptake than the membrane vesicles from fibroblasts cultured at 41°C. The two types of membrane vesicle had similar uptake rates of α-aminoisobutyric acid. The results of hexose and amino acid uptake by the membrane vesicles correlated well with those observed with the whole cells. Km values for stereospecific d-glucose uptake by the membrane vesicles from TS-68-infected chicken embryo fibroblasts cultured at 41 and 37°C were similar, but the V value was greater for the membrane vesicles from TS-68-infected cells cultured at 37°C. Cytochalasin B competitively inhibited stereospecific hexose uptake in both types of membrane vesicle. These findings suggest that the membrane vesicles retained many of the features of hexose and amino acid transport observed in whole cells, and that the increased rate of hexose transport seen in the virallytransformed chicken embryo fibroblasts was due to an increase in the number or availability of hexose carriers.  相似文献   

2.
Mixed membrane vesicles prepared from cultured chick embryo fibroblasts possess a stereospecific D-glucose transport system, the properties of which are identical to those of the system in intact cells. Uptake of D-glucose proceeds without chemical alteration. The rate of stereospecific uptake of D-glucose into the mixed vesicles is 70% greater than that of the homogenate and uptake is directly proportional to membrane protein concentration. Stereospecific D-glucose uptake appears linear for 0.3 min, reaches a maximum at 2--5 min, and declines to zero by 5 h as L-glucose enters the vesicles. Uptake is osmotically sensitive and inhibited by cytochalasin B (Ki = 0.13 microM) and the structural analogues of D-glucose : D-mannose, 2-deoxy-D-glucose, 3-O-methyl-D-glucose, D-galactose and maltose, but not by sucrose of L-glucose. Uphill counterflow can be demonstrated and the apparent activation energy displays a transition from 47.7 kcal/mol below 11 degrees C to 18.1 kcal/mol above 11 degrees C. Stereospecific uptake rates of mixed vesicles prepared from Rous sarcoma virus-transformed cells are increased 30% over control values, and are increased 66% in vesicles derived from cells incubated for 24 h in glucose-free medium. Plasma membrane vesicles prepared from these cells by a dextran cushion centrifugation procedure display a 9-fold increase in the specific activity of stereospecific D-glucose uptake relative to the homogenate. Extraction of these membranes with dimethylmaleic anhydride (5 mg/mg protein) results in substantial or complete removal of major polypeptides of molecular weight 40 000, 55 000, 75 000, 78 000 and 200 000 with no loss in total uptake activity. Following extraction, major polypeptides of molecular weight 28 000, 33 000 and 68 000 remain in the membrane residue.  相似文献   

3.
Membrane vesicles isolated from untransformed Balb/c and Swiss mouse fibroblasts and their SV 40-transformed derivatives were shown to catalyze carrier-mediated, intravesicular uptake of alpha-aminoisobutyric acid and D-glucose. Concentrative uptake of alpha-aminoisobutyric acid required the presence of a Na+-gradient (external greater than internal) and could occur independently of endogenous (Na+ + K+)ATPase activity. A K+ diffusion gradient (internal greater than external) in the presence of valinomycin, or the addition of the Na+ salt of a highly permeant anion, conditions expected to create an interior-negative membrane potential stimulated Na+-gradient-dependent uptake, suggesting this process is electrogenic. D-Glucose uptake was nonconcentrative and did not require ion gradients or metabolic conversion. Na+ gradient-dependent transport of alpha-aminoisobutyric acid was reduced both in initial rate and extent of uptake in vesicles from confluent untransformed cells and increased in those from SV 40-transformed cells, compared with activities observed in vesicles from proliferating untransformed cells. No changes in D-glucose carrier activity were observed when assayed at low glucose concentrations.  相似文献   

4.
5.
As has been observed with many types of cultured cells, chicken embryo fibroblasts (CEF) when exposed to the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) develop a 3- to 4-fold increase in hexose transport activity in 4 h. This increase in transport activity occurred despite a modest decline of 20% in [3H]leucine incorporation into acid insoluble fractions. Cycloheximide largely, but not completely, blocked the increase in transport activity during TPA exposure. The effects of TPA were somewhat similar to those of glucose starvation induced enhancement of hexose transport activity. Furthermore, with TPA there was no additive effect to that produced by glucose starvation. Plasma membrane enriched fractions were prepared from CEF treated with or without TPA. Membranes prepared from TPA exposed cells had a two-fold enhancement of stereospecific D-glucose transport activity as well as D-glucose inhibitable [3H]cytochalasin B binding as compared to the membranes from control CEF. There was no effect on transport when membranes were exposed to TPA in vitro. These results provide strong evidence that TPA exposure leads to an increase in the number of functioning transporters, an effect largely requiring protein synthesis.  相似文献   

6.
Solubilized Ehrlich cell plasma membrane proteins were incorporated into lipid vesicles in the presence of added phospholipid, using Sephadex G-50 chromatography combined with a freeze-thaw step. Liposomes formed in K+ exhibited high levels of Na+-dependent, alpha-aminoisobutyric acid uptake which was electrogenic and inhibited by other amino acids. The transport activity reconstituted was similar to that observed in native plasma membrane vesicles. In addition to transport by system A, leucine exchange activity (system L), Na+-dependent serine exchange activity (system ASC), and stereospecific glucose transport activity were also reconstituted. The latter was inhibited by D-glucose, D-galactose, cytochalasin B, and mercuric chloride. The medium used for reconstitution was critical for the recovery of Na+-dependent amino acid transport. The use of Na+ in the reconstitution procedure led to formation of liposomes which displayed little Na+-dependent and gradient-stimulated amino acid uptake. In contrast, all transport activities studied were efficiently reconstituted in K+ medium.  相似文献   

7.
H Beug  M Claviez  B M Jockusch  T Graf 《Cell》1978,14(4):843-856
Chicken embryo fibroblasts transformed with the Ta and ts68 mutants of Rous Sarcoma virus (RSV) were enucleated and studied for their capacity to express reversibly the transformed phenotype in response to temperature changes. After shift to the permissive temperature (35 degrees C), the cytoplasts acquired a transformed morphology and displayed characteristic ruffles and microvilli at their surface. As detected by immunofluorescence, they also lost their actin filament cables and exhibited characteristic changes in the pattern of cell surface structures containing LETS protein. Expression of all these transformation parameters was reversible after shiftback to the nonpermissive temperature (41 degrees C). These results indicate that a whole set of changes characteristic for the transformed phenotype can be expressed independently of the cell nucleus. In contrast, ts mutant-infected cytoplasts were no longer able to respond to temperature shifts with changes in their hexose transport rate. Cytoplasts prepared from cells grown at 41 degrees C retained their low rate of hexose uptake after shift to 35 degrees C, whereas cytoplasts from cells grown at 35 degrees C exhibited a high rate of hexose transport even after 10 hr of shift to 41 degrees C. These results are in accordance with the hypothesis that the product of the src gene of RSV represents a multifunctional protein which acts independently on nuclear and extranuclear sites.  相似文献   

8.
Mixed membrane vesicle populations composed of plasma membrane and endoplasmic reticulum were prepared from Balb/c 3T3 and simian virus 40-transformed Balb/c 3T3 mouse fibroblasts. The initial rates of uptake of L-leucine and alpha-aminoisobutyric acid by these vesicles were stimulated by a NaCl gradient (external greater than internal). Cation specificity for stimulation of L-leucine uptake was Na+ greater than Li+ greater than K+. NaSCN was as effective as NaCl. Stimulation of uptake of both amino acids by a NaCl gradient was twice as great in vesicles from transformed as compared to non-transformed cells. The NaCl gradient produced transient accumulation of both L-leucine and alpha-aminoisobutyric acid to twice the equilibrium level in vesicles from transformed cells. No such "overshoot" was observed in vesicles from nontransformed cells. In vesicles from the contact-inhibitable Balb/c 3T3 cells, transport of alpha-aminoisobutyric acid, but non L-leucine, exhibited a density-dependent decrease in Na+ gradient induced stimulation, from 248% for sub-confluent to 109% with confluent cells. No density-related changes in uptake were noted with vesicles from the transformed cells. These studies suggest that variation in amino acid uptake associated with viral transformation may be related, at least in part, to alterations in Na+ permeability of the surface membrane.  相似文献   

9.
Enhanced rates of carrier-mediated 3-O-methyl-D-glucose (0.1 mM) transport were observed in primary cell cultures of chicken embryo fibroblasts deprived of glucose for 1 day. The addition of 5.5 mM-glucose, glucosamine or 2-deoxy-D-glucose for 15 min (37 degrees C) to glucose-starved cultures followed by washing and immediate measurement of 3-O-methyl-D-glucose transport resulted in an apparent further stimulation of transport. Transport stimulation increased with increasing concentrations of the added preincubation sugar and was observed at test concentrations ranging from 0.1 mM- to 10 mM-3-O-methyl-D-glucose. This enhancement occurred when the preloaded sugar was rapidly effluxing from cells and was eliminated by allowing cultures to incubate in buffer without sugar for 30 min (37 degrees C) after the removal of hexose and before measuring transport. A transient overshoot in the cumulative uptake of 3-O-methyl-D-glucose was observed in glucose-starved cultures that were pre-incubated in the presence of 55 mM-glucose or -glucosamine for 15 min (37 degrees C). These data suggest that counter-transport accounts for the apparent enhancement of glucose-transport capability observed in glucose-starved cells when they are briefly re-exposed to hexose.  相似文献   

10.
Hexose transport in plasma membrane vesicles prepared from L6 rat myoblasts was shown to be stereospecific, activated by glucose starvation and occurred by both high and low affinity systems. Transport by the high affinity system was shown to occur by an active transport process. Furthermore, the high affinity system was shown to be defective in vesicles prepared from F72 cells (hexose transport mutant). These results indicate that the high affinity hexose transport system is retained in the plasma membrane vesicles. Thus plasma membrane vesicles could be of value in further characterization of the L6 high affinity hexose transport system, without interference from the various metabolic events occurring in whole cells.  相似文献   

11.
At 5 μg/ml, insulin stimulates hexose, A-system amino acid, and nucleoside transport by serum-starved chick embryo fibroblasts (CEF). This stimulation, although variable, is comparable to that induced by 4% serum. The sulfhydryl oxidants diamide (1–20 μM). hydrogen peroxide (500 μM), and methylene blue (50 μM) mimic the effect of insulin in CEF. PCMB-S,1 a sulfhydryl-reacting compound which penetrates the membrane slowly, has a complex effect on nutrient transport in serum- and glucose-starved CEF. Hexose uptake is inhibited by 0.1–1 mM PCMB-S in a time- and concentration-dependent manner, whereas A-system amino acid transport is inhibited maximally within 10 min of incubation and approaches control rates after 60 min. A differential sensitivity of CEF transport systems is also seen in cells exposed to membrane-impermeant glutathione-maleimide I, designated GS-Mal. At 2 mM GS-Mal reduces the rate of hexose uptake 80–100% in serum- and glucose-starved CEF; in contrast A-system amino acid uptake is unaffected. D-glucose, but not L-glucose or cytochalasin B, protects against GS-Mal inhibition. These results are consistent with the hypothesis that sulfhydryl groups are involved in nutrient transport and that those sulfhydryls associated with the hexose transport system and essential for its function are located near the exofacial surface of the membrane in CEF.  相似文献   

12.
13.
Plasma membrane vesicles prepared from adipocytes incubated with insulin exhibited accelerated D-glucose transport activity characteristic of insulin action on intact fat cells. Both control and insulin-stimulated D-glucose transport activities were inhibited by cytochalasin B and thiol reagents. Extraction of plasma membranes with dimethylmaleic anhydride eluted 80% of the protein from plasma membrane vesicles. The two major glycoprotein bands (94,000 and 78,000 daltons) and small amounts of a 56,000-dalton band were retained in dodecyl sulfate gels of the extracted membranes. Both control and insulin-activated D-glucose transport activities were retained by plasma membrane vesicles extracted with dimethylmaleic anhydride. Cytochalasin B binding activity was also retained by extracted membrane vescles and D-glucose uptake into extracted vescles derived from untreated or insulin-treated fat cells was inhibited by cytochalasin B. These results suggest that the modification of the adipocyte hexose transport system elicited by insulin action is not altered by a major purification step which involves quantitative extraction of extrinsic membrane proteins.  相似文献   

14.
The phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), and diacylglycerol kinase activities in the plasma membrane-rich fraction of chicken embryo fibroblasts infected with a temperature-sensitive mutant of Rous sarcoma virus increased when the cells were shifted from the nonpermissive temperature, 41 degrees C, to the permissive temperature, 35 degrees C. Temperature shift from 35 to 41 degrees C decreased the lipid kinase activities in the membrane vesicles. These changes accompanied the changes observed in pp60v-src protein kinase activity. Thermal inactivation at 41 degrees C did not appreciably reduce PI and PIP kinase activities in membrane vesicles prepared from uninfected or Rous sarcoma virus-transformed cells, whereas pp60v-src protein kinase activity in the membrane vesicles was rapidly inactivated under the same conditions. These data suggest that pp60v-src may indirectly enhance PI and PIP phosphorylation but not directly contribute to this pathway.  相似文献   

15.
The regulation of hexose transporters of cultured fibroblasts was investigated by exposing chicken embryo fibroblasts (CEF) to hypertonic culture medium, a condition known to enhance hexose transport activity. The effects of hypertonicity and the role of protein synthesis were examined with CEF in the basal (glucose fed) and transport enhanced (glucose starved) states. Glucose-fed CEF exposed to hypertonic conditions developed four-fold enhancement of hexose transport activity within 4 hrs; this declined in the following 20 hrs to a level slightly higher than the fed control. Protein synthesis was required in part for this effect, since the presence of cycloheximide during hypertonic exposure of fed CEF blocked the increase in of transport by almost 50%. Although the increased transport produced by glucose starvation was not further enhanced by hypertonicity, hypertonic treatment of starved CEF during glucose refeeding largely prevented the loss of transport activity to the basal, fed state. The hypertonic effects were concentration dependent (240mOsm optimal) and could be elicited with NaCl, KCl, or sucrose. Hypertonic treatment typically led to a greater than 50% decline in the incorporation of [3H]leucine into acid-insoluble fractions. The changes in transport were evident at the plasma membrane level, and studies of membrane vesicles prepared from hypertonically treated fed CEF showed a doubling of both [3H]cytochalasin B binding and the Vmax of D-glucose transport. These findings indicate that exposure of CEF to hypertonic conditions has some effects similar to those produced by glucose starvation and suggest that protein synthesis is to some extent involved in the regulation of hexose transporters in CEF.  相似文献   

16.
We can distinguish two classes of membrane transport changes in cultured cells: (a) growth-rate contingent changes are those which occur in coordination with the onset of density-dependent inhibition of growth; (b) transformation-specific changes are those which occur when cells become transformed, and which can be detected even when normal and transformed cells are growing at the same rate. Growth-rate contingent changes include the density-dependent changes in phosphate, nucleoside, glucose, amino acid, and potassium transport. Only one transformation-specific transport change has been found in Rous-transformed chicken embryo fibroblasts: an increased rate of hexose transport. The variation in potassium transport are associated with variations in the number of ouabain binding sites in the membrane. The molecular basis for changes in the rate of hexose transport is unknown, although gross changes in membrane bilayer composition and "fluidity" seem not to be involved. In analyzing the regulation of hexose transport activity, we find that decreased cAMP may play a role in the transformation-specific increase in hexose transport, but that fibrinolytic activity is not necessary.  相似文献   

17.
A study was made of the transport of a variety of amino acids by uninfected and Rous sarcoma virus-infected chicken embryo fibroblasts. Following a period of amino acid starvation, transformed, but not normal cells, showed increased levels of transport for alpha-aminoisobutyric acid, proline and alanine, three amino acids which are transported primarily by the A transport system. There was no starvation-induced increase in the transport of leucine, phenylalanine, lysine, or cycloleucine. In the absence of starvation, normal and transformed cells exhibited comparable rates of amino acid transport. Cycloheximide was able to block the increase in uptake. The enhanced uptake was characterized by an increase in Vmax for transport and little change in Km. The data demonstrate that an alteration in the regulation of the A amino acid transport system is an early event in malignant transformation by Rous sarcoma virus. However, since this alteration in made manifest only following a period of starvation, our findings suggest that increased amino acid uptake does not play a role in generating the other manifestations of the transformed state seen in cell culture.  相似文献   

18.
The effects of hyperthermia (41-43 degrees C) on the membrane potential (calculated from the transmembrane distribution of [3H]tetraphenylphosphonium) and Na+ transport of Chinese hamster V79 fibroblasts were studied. At 41 degrees C, hyperthermia induced a membrane hyperpolarization of log phase cells (5 to 26 mV) that was reversible upon returning to 37 degrees C. The hyperpolarization was inhibited 50% by 1 mM ouabain or 0.25 mM amiloride, an inhibitor of Na+:H+ exchange. Shifting temperature to 41 degrees C increased ouabain-sensitive Rb+ uptake indicating activation of the electrogenic Na+ pump. At 43 degrees C for 60 min, the membrane potential of log phase cells depolarized (20-35 mV). Parallel studies demonstrated enhanced Na+ uptake at 41 degrees C only in the presence of ouabain. At 43 degrees C, Na+ uptake was increased relative to controls with or without ouabain present. At both 41 and 43 degrees C, 0.25 mM amiloride inhibited heat-stimulated Na+ uptake. Na+ efflux was enhanced at 41 degrees C in a process inhibited by ouabain. Thus, one consequence of heat treatment at 41 degrees C is activation of Na+:H+ exchange with the resultant increase in cytosolic [Na+] activating the electrogenic Na+ pump. At temperatures greater than or equal to 43 degrees C, the Na+ pump is inhibited.  相似文献   

19.
A method for the selection and isolation of hexose transport mutants in undifferentiated rat myoblast L6 cells is reported; 2-deoxy-D-glucose (2-DOG)-and 2-deoxy-2-fluoro-D-glucose (2FG)-resistant mutants were selected after mutagenization of L6 cells with ethyl methanesulfonate. Of these, D18 and D23 (selected with 0.1 mM 2-DOG) and F72 and F76 (selected with 0.1 mM 2FG) exhibited the lowest hexose transport activity. Uptake of 0.06 mM 2-DOG, 2FG, or 3-O-methyl-D-glucose (3-OMG) by mutants grown in fructose medium supplemented with 0.05 mM 2FG was about four- to five-fold lower than the parental L6 cells. These mutants contain normal levels of ATP and glycolytic enzyme activities. They also exhibit normal transport activities for alpha-aminoisobutyric acid and fructose. Furthermore, hexose transport was observed to be decreased in plasma membrane vesicles prepared from these mutants. Kinetic analysis of 2-DOG and 3-OMG transport in mutant F72 demonstrated that the Vmax for 2-DOG uptake was significantly reduced, whereas the Vmax for 3-OMG transport was not affected. In all cases, the affinity for these hexose analogues was unaffected. In addition mutant F72 was found to be only slightly affected by treatment with various energy inhibitors and sulfhydryl reagents. The results suggest that this mutant is defective in, or has low levels of, a plasma membrane component(s) involved in the high-affinity hexose transport system.  相似文献   

20.
Cultured fibroblasts derived from skin biopsies were used to develop a system for studying insulin resistance in human tissue in vitro. Uptake of alpha-aminoisobutyric acid by cultured human skin fibroblasts was found to occur by a combination of saturable and nonsaturable processes. Insulin stimulated uptake by decreasing the Km of the saturable transport system from 0.58 mM to 0.26 mM. The maximal velocity of saturable uptake was 16.6 nmol/10(7) cells/min in both the presence and absence of insulin. Uptake of alpha-aminoisobutyric acid at 0.2 mM was studied in human skin fibroblasts with and without chronic exposure to insulin for 4 days at an initial concentration of 10 micrograms/ml. Unstimulated uptake was increased from 17 to 20 nmol/10(8) cells/min, and the increase in uptake due to maximal stimulation by insulin was unchanged at 16 nmol/10(8) cells/min in the cells exposed chronically to insulin. The apparent Km for insulin was increased from 80 microunits/ml to 2400 microunits/ml in the insulin-exposed cells. Thus, chronic exposure to insulin induces resistance of alpha-aminoisobutyric acid uptake by decreasing the apparent affinity for insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号