首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endemism and ecological islands: the ostracods from Jamaican bromeliads   总被引:4,自引:0,他引:4  
1. The inhabitants of ecological islands, such as the phytolemata of bromeliad plants, provide an opportunity to examine the genetic patterns resulting from island radiations and draw inferences about modes of speciation.
2. Allozyme electrophoresis, as well as mitochondrial DNA and morphological analyses, were employed to delimit species boundaries and assess the population genetic structure of the ostracods from bromeliads on the island of Jamaica.
3. Nine species from the genus Elpidium were both sexually reproducing and endemic to the island. The other commonly encountered ostracod genus, Candonopsis , was represented by at least two sexually reproducing species.
4. Most Elpidium species showed very restricted distributions, low heterozygosity, and marked gene pool fragmentation, suggesting that population bottlenecks have occurred frequently. Whether founder events played a causal role in the diversification of these ostracods remains uncertain, but bromeliad habitats seem to be a source of high biodiversity, and may represent an ideal setting for extensive allopatric speciation.  相似文献   

2.
The phoretic behaviour of ostracods (Elpidium bromeliarum) andannelids (Dero superterrenus) that inhabit tank bromeliads was studied. Our previous field observations had shown that bromeliad ostracods can be found attached to the skin of amphibians and reptiles that move among bromeliads, probably allowing the ostracods to colonise new tanks. In this paper, we present the first record of bromeliad annelids found attached to frogs moving among bromeliads in the field. We have also enlarged the database on bromeliad ostracods engaged in phoretic association with terrestrial vertebrates in three locations in southeastern Brazil. In our laboratory experiments bromeliad annelids show a strong significant tendency to climb onto papers that had been in contact with frog skin when compared with control papers, indicating a kind of chemically oriented behaviour. Bromeliad ostracods, on the other hand, attached themselves to treated and untreated papers with same frequency. When brought into contact with various species of frogs and lizards, the bromeliad annelids and ostracods both presented preference to attach themselves to frogs, but the annelids showed a stronger preference to attach to frogs and to avoid attachment to lizards. Another experiment demonstrated that bromeliad annelids are much more prone to dehydration than are ostracods. We suggest that the chemically oriented behaviour presented by bromeliad annelids toward frogs could diminish the risk of death by dehydration during the transport among bromeliads due to the moist characteristic of frog skins.  相似文献   

3.
During a study about bromeliad tadpoles (Scinax perpusillus), the ability of bromeliad ostracods (genus Elpidium) to pass unharmed through the tadpole gut was documented. Seven Elpidium were found alive inside a tadpole's digestive tract. Subsequent experiments demonstrated that Scinax tadpoles frequently ingest bromeliad ostracods, eliminating them unharmed in the faeces. Another laboratory experiment demonstrated these ostracods'ability to pass through a mammalian (mouse) gut alive. The consequences of this ability in ostracod ecology and evolution is discussed. Biotic and abiotic data from the bromeliads where the ostracods and tadpoles were collected are given.  相似文献   

4.
The Crassulacean genus Aeonium is a well‐known example for plant species radiation on oceanic archipelagos. However, while allopatric speciation among islands is documented for this genus, the role of intra‐island speciation due to population divergence by topographical isolation or ecological heterogeneity has not yet been addressed. The aim of this study was to investigate intraspecific genetic structures and to identify spatial and ecological drivers of genetic population differentiation on the island scale. We analyzed inter simple sequence repeat variation within two island‐endemic Aeonium species of La Palma: one widespread generalist that covers a large variety of different habitat types (Ae. davidbramwellii) and one narrow ecological specialist (Ae. nobile), in order to assess evolutionary potentials on this island. Gene pool differentiation and genetic diversity patterns were associated with major landscape structures in both species, with phylogeographic implications. However, overall levels of genetic differentiation were low. For the generalist species, outlier loci detection and loci–environment correlation approaches indicated moderate signatures of divergent selection pressures linked to temperature and precipitation variables, while the specialist species missed such patterns. Our data point to incipient differentiation among populations, emphasizing that ecological heterogeneity and topographical structuring within the small scales of an island can foster evolutionary processes. Very likely, such processes have contributed to the radiation of Aeonium on the Canary Islands. There is also support for different evolutionary mechanisms between generalist and specialist species.  相似文献   

5.
Anagenetic evolution in island plants   总被引:3,自引:2,他引:1  
Aim  Plants in islands have often evolved through adaptive radiation, providing the classical model of evolution of closely related species each with strikingly different morphological and ecological features and with low levels of genetic divergence. We emphasize the importance of an alternative (anagenetic) model of evolution, whereby a single island endemic evolves from a progenitor and slowly builds up genetic variation through time.
Location  Continental and oceanic islands.
Methods  We surveyed 2640 endemic angiosperm species in 13 island systems of the world, both oceanic and continental, for anagenetic and cladogenetic patterns of speciation. Genetic data were evaluated from a progenitor and derivative species pair in Ullung Island, Korea, and Japan.
Results  We show that the anagenetic model of evolution is much more important in oceanic islands than previously believed, accounting for levels of endemic specific diversity from 7% in the Hawaiian Islands to 88% in Ullung Island, Korea, with a mean for all islands of 25%. Examination of an anagenetically derived endemic species in Ullung Island reveals genetic (amplified fragment length polymorphism) variation equal or nearly equal to that of its continental progenitor.
Main conclusions  We hypothesize that, during anagenetic speciation, initial founder populations proliferate, and then accumulate genetic variation slowly through time by mutation and recombination in a relatively uniform environment, with drift and/or selection yielding genetic and morphological divergence sufficient for the recognition of new species. Low-elevation islands with low habitat heterogeneity are highly correlated with high levels of anagenetic evolution, allowing prediction of levels of the two models of evolution from these data alone. Both anagenetic and adaptive radiation models of speciation are needed to explain the observed levels of specific and genetic diversity in oceanic islands.  相似文献   

6.
The bromeliad habitat contributes to a high biodiversity and we recorded three treefrog species as new phoretic agents of ostracods, and a first case of hyperphoresy among treefrogs, ostracods and ciliates, in these habitats of Atlantic Forest. Densities of ciliates and ostracods showed significant relationships suggesting the importance of hyperphoresy for ciliate dispersion.  相似文献   

7.
The biogeographic patterns in sexually reproducing animals in island archipelagos may be interpreted as reflecting the importance of allopatric speciation. However, as the forms are allopatric, their reproductive isolation is largely untestable. A historical perspective integrating geology and molecular phylogeny reveals specific cases where ancient precursor islands coalesce, which allows the application of population genetics to critically test genetic isolation. The Anolis populations on Martinique in the Lesser Antilles are one such case where species-level populations on ancient precursor islands (ca 6-8Myr BP) have met relatively recently. The distribution of the mtDNA lineages is tightly linked to the precursor island, but the population genetic analysis of microsatellite variation in large samples shows no evidence of restricted genetic exchange between these forms in secondary contact. This tests, and rejects, the hypothesis of simple allopatric speciation in these forms. By contrast, Martinique has pronounced environmental zonation, to which anoles are known to adapt. The population genetic analysis shows restricted genetic exchange across the ecotone between xeric coastal habitat and montane rainforest. This does not indicate full ecological speciation in these forms, but it does suggest the relative importance of the role of ecology in speciation in general.  相似文献   

8.
Twelve species of brackish and freshwater ostracods were collected from the island of Yakushima in southern Japan. Six species, belonging to the genera Cypria, Dolerocypris, Stenocypris, Schellencandona and Paracypria, are new and are described herein. The genus Schellencandona is reported for the first time outside Europe. Although a wide range of apparently suitable habitats was sampled for ostracods across the island, all specimens were recovered from or near the coast; further inland yielded no ostracods. The freshwater habitats around the coast of the island consist of springs and rockpools at the top of the shore above most high tide levels.  相似文献   

9.
The two species of the palm genus Howea (Arecaceae) from Lord Howe Island, a minute volcanic island in the Tasman Sea, are now regarded as one of the most compelling examples of sympatric speciation, although this view is still disputed by some authors. Population genetic and ecological data are necessary to provide a more coherent and comprehensive understanding of this emerging model system. Here, we analyse data on abundance, juvenile recruitment, pollination mode and genetic variation and structure in both species. We find that Howea forsteriana is less abundant than Howea belmoreana . The genetic data based on amplified fragment length polymorphisms markers indicate similar levels of variation in the two species, despite the estimated census population size of H. belmoreana being three times larger than that of H. forsteriana . Genetic structure within species is low although some weak isolation by distance is detectable. Gene flow between species appears to be extremely limited and restricted to early-generation hybrids – only three admixed individuals, classified as F2s or first generation backcrosses to a parental species, were found among sampled palms. We conclude that speciation in Howea was indeed sympatric, although under certain strict definitions it may be called parapatric.  相似文献   

10.
The land snail genus Albinaria exhibits an extreme degree of morphological differentiation in Greece, especially in the island of Crete. Twenty-six representatives of 17 nominal species and a suspected hybrid were examined by sequence analysis of a PCR-amplified mitochondrial DNA fragment of the large rRNA subunit gene. Maximum parsimony and neighbor-joining phylogenetic analyses demonstrate a complex pattern of speciation and differentiation and suggest that Albinaria species from Crete belong to at least three distinct monophyletic groups, which, however, are not monophyletic with reference to the genus as a whole. There is considerable variation of genetic distance within and among “species” and groups. The revealed phylogenetic relations do not correlate well with current taxonomy, but exhibit biogeographical coherence. Certain small- and large-scale vicariance events can be traced, although dispersal and parapatric speciation may also be present. Our analysis suggests that there was an early and rapid differentiation of Albinaria groups across the whole of the range followed by local speciation events within confined geographical areas.  相似文献   

11.
The genus R haphithamnus (Verbenaceae) consists of two species, one in South America and another endemic to the Juan Fernández archipelago, Chile. The genus represents an example of anagenetic speciation in which the island populations have diverged from their colonizing ancestors to the point where they are recognized as a distinct species. The island species R haphithamnus venustus differs from the continental R . spinosus primarily by floral traits associated with adaptation to hummingbird pollination. Two molecular markers, amplified fragment length polymorphisms (AFLPs) and microsatellites, were used to estimate divergence between the continental and insular species, and to compare diversity in the two species. The comparable or greater diversity in the insular species observed in some diversity indices of AFLPs would support the hypothesis that during the course of anagenetic speciation it has recovered from any reduction of genetic diversity associated with colonization of the archipelago. This pattern of comparable or higher diversity in insular species is seen with other instances of anagenetic speciation in the Juan Fernández archipelago. By contrast, the lower genetic diversity in the insular R . venustus found in microsatellites is likely to be the result of a founder effect from the original colonization of the archipelago; prior molecular studies suggest recent colonization of the Juan Fernández archipelago by R haphithamnus . The seeming non‐concordance between the present results and the widely accepted biogeography of R haphithamnus inferred from other data is discussed and an explanation is presented.  相似文献   

12.
Island systems are important models for evolutionary biology because they provide convenient, discrete biogeographic units of study. Continental islands with a history of intermittent dry land connections confound the discrete definitions of islands and have led zoologists to predict (i) little differentiation of terrestrial organisms among continental shelf islands and (ii) extinction, rather than speciation, to be the main cause of differences in community composition among islands. However, few continental island systems have been subjected to well‐sampled phylogeographic studies, leaving these biogeographic assumptions of connectivity largely untested. We analysed nine unlinked loci from shrews of the genus Crocidura from seven mountains and two lowland localities on the Sundaic continental shelf islands of Sumatra and Java. Coalescent species delimitation strongly supported all currently recognized Crocidura species from Sumatra (six species) and Java (five species), as well as one undescribed species endemic to each island. We find that nearly all species of Crocidura in the region are endemic to a single island and several of these have their closest relative(s) on the same island. Intra‐island genetic divergence among allopatric, conspecific populations is often substantial, perhaps indicating species‐level diversity remains underestimated. One recent (Pleistocene) speciation event generated two morphologically distinct, syntopic species on Java, further highlighting the prevalence of within‐island diversification. Our results suggest that both between‐ and within‐island speciation processes generated local endemism in Sundaland, supplementing the traditional view that the region's fauna is relictual and primarily governed by extinction.  相似文献   

13.
From Darwin''s study of the Galapagos and Wallace''s study of Indonesia, islands have played an important role in evolutionary investigations, and radiations within archipelagos are readily interpreted as supporting the conventional view of allopatric speciation. Even during the ongoing paradigm shift towards other modes of speciation, island radiations, such as the Lesser Antillean anoles, are thought to exemplify this process. Geological and molecular phylogenetic evidence show that, in this archipelago, Martinique anoles provide several examples of secondary contact of island species. Four precursor island species, with up to 8 mybp divergence, met when their islands coalesced to form the current island of Martinique. Moreover, adjacent anole populations also show marked adaptation to distinct habitat zonation, allowing both allopatric and ecological speciation to be tested in this system. We take advantage of this opportunity of replicated island coalescence and independent ecological adaptation to carry out an extensive population genetic study of hypervariable neutral nuclear markers to show that even after these very substantial periods of spatial isolation these putative allospecies show less reproductive isolation than conspecific populations in adjacent habitats in all three cases of subsequent island coalescence. The degree of genetic interchange shows that while there is always a significant genetic signature of past allopatry, and this may be quite strong if the selection regime allows, there is no case of complete allopatric speciation, in spite of the strong primae facie case for it. Importantly there is greater genetic isolation across the xeric/rainforest ecotone than is associated with any secondary contact. This rejects the development of reproductive isolation in allopatric divergence, but supports the potential for ecological speciation, even though full speciation has not been achieved in this case. It also explains the paucity of anole species in the Lesser Antilles compared to the Greater Antilles.  相似文献   

14.
Ecological divergence in a species provides a valuable opportunity to study the early stages of speciation. We focused on Metrosideros polymorpha, a unique example of the incipient radiation of woody species, to examine how an ecological divergence continues in the face of gene flow. We analyzed the whole genomes of 70 plants collected throughout the island of Hawaii, which is the youngest island with the highest altitude in the archipelago and encompasses a wide range of environments. The continuous M. polymorpha forest stands on the island of Hawaii were differentiated into three genetic clusters, each of which grows in a distinctive environment and includes substantial genetic and phenotypic diversity. The three genetic clusters showed signatures of selection in genomic regions encompassing genes relevant to environmental adaptations, including genes associated with light utilization, oxidative stress, and leaf senescence, which are likely associated with the ecological differentiation of the species. Our demographic modeling suggested that the glaberrima cluster in wet environments maintained a relatively large population size and two clusters split: polymorpha in the subalpine zone and incana in dry and hot conditions. This ecological divergence possibly began before the species colonized the island of Hawaii. Interestingly, the three clusters recovered genetic connectivity coincidentally with a recent population bottleneck, in line with the weak reproductive isolation observed in the species. This study highlights that the degree of genetic differentiation between ecologically-diverged populations can vary depending on the strength of natural selection in the very early phases of speciation.  相似文献   

15.
Sympatric speciation has been demonstrated in few empirical case studies, despite intense searches, because of difficulties in testing the criteria for this mode of speciation. Here, we report a possible case of sympatric speciation in ricefishes of the genus Oryzias on Sulawesi, an island of Wallacea. Three species of Oryzias are known to be endemic to Lake Poso, an ancient tectonic lake in central Sulawesi. Phylogenetic analyses using RAD‐seq‐derived single nucleotide polymorphisms (SNPs) revealed that these species are monophyletic. We also found that the three species are morphologically distinguishable and clearly separated by population‐structure analyses based on the SNPs, suggesting that they are reproductively isolated from each other. A mitochondrial DNA chronogram suggested that their speciation events occurred after formation of the tectonic lake, and existence of a historical allopatric phase was not supported by coalescent‐based demographic inference. Demographic inference also suggested introgressive hybridization from an outgroup population. However, differential admixture among the sympatric species was not supported by any statistical tests. These results all concur with criteria necessary to demonstrate sympatric speciation. Ricefishes in this Wallacean lake provide a promising new model system for the study of sympatric speciation.  相似文献   

16.
Abstract Volcanic archipelagos represent excellent areas to study colonization and speciation processes. The grasshopper genus Arminda is one of many endemic taxa of the Canary Islands. It consists of seven wingless species, most of which are single‐island endemics. We sequenced two mitochondrial (12s rRNA, ND5) and two nuclear gene fragments (28s rRNA, ITS2) to reconstruct the colonization pattern of the genus. Our results are in accordance with a stepping‐stone colonization model from east to west, corresponding to the prevailing ocean currents, but alternative hypotheses cannot be fully rejected. The populations of A. brunneri from Tenerife belong to two different lineages (east and west) consistent with the geological history of the island. It remains to be tested whether these lineages represent different species and whether further lineages exist on this island. The five clades of the four western islands (A. brunneri group) have approximately similar branch lengths. The short internodes between these lineages resulted in a poorer phylogenetic resolution. Specimens from La Palma were genetically distinct and are subsequently described as a new species, Arminda palmae sp.n. Our results suggest in situ speciation on Gran Canaria, which was accompanied by a stronger degree of morphological diversification than the inter‐island speciation processes. The aberrant species A. canariensis has formerly been assigned to a monotypic subgenus Chopardminda, which is now synonymized with Arminda syn.n. based on its phylogenetic position. Gran Canaria seems to be the only island where Arminda species occur sympatrically, although allopatric speciation seems likely due to the long history of volcanism and erosion on the island.  相似文献   

17.
While the role of host preference in ecological speciation has been investigated extensively in terrestrial systems, very little is known in marine environments. Host preference combined with mate choice on the preferred host can lead to population subdivision and adaptation leading to host shifts. We use a phylogenetic approach based on two mitochondrial genetic markers to disentangle the taxonomic status and to investigate the role of host specificity in the speciation of the nudibranch genus Phestilla (Gastropoda, Opisthobranchia) from Guam, Palau and Hawaii. Species of the genus Phestilla complete their life cycle almost entirely on their specific host coral (species of Porites, Goniopora and Tubastrea). They reproduce on their host coral and their planktonic larvae require a host-specific chemical cue to metamorphose and settle onto their host. The phylogenetic trees of the combined cytochrome oxidase I and ribosomal 16S gene sequences clarify the relationship among species of Phestilla identifying most of the nominal species as monophyletic clades. We found a possible case of host shift from Porites to Goniopora and Tubastrea in sympatric Phestilla spp. This represents one of the first documented cases of host shift as a mechanism underlying speciation in a marine invertebrate. Furthermore, we found highly divergent clades within Phestilla sp. 1 and Phestilla minor (8.1-11.1%), suggesting cryptic speciation. The presence of a strong phylogenetic signal for the coral host confirms that the tight link between species of Phestilla and their host coral probably played an important role in speciation within this genus.  相似文献   

18.
The genetic structure of populations of closely related, sympatric species may hold the signature of the geographical mode of the speciation process. In fully allopatric speciation, it is expected that genetic differentiation between species is homogeneously distributed across the genome. In nonallopatric speciation, the genomes may remain undifferentiated to a large extent. In this article, we analyzed the genetic structure of five sympatric species from the plant genus Heliotropium in the Atacama Desert. We used amplified fragment length polymorphisms (AFLPs) to characterize the genetic structure of these species and evaluate their genetic differentiation as well as the number of loci subject to positive selection using divergence outlier analysis (DOA). The five species form distinguishable groups in the genetic space, with zones of overlap, indicating that they are possibly not completely isolated. Among‐species differentiation accounts for 35% of the total genetic differentiation (FST = 0.35), and FST between species pairs is positively correlated with phylogenetic distance. DOA suggests that few loci are subject to positive selection, which is in line with a scenario of nonallopatric speciation. These results support the idea that sympatric species of Heliotropium sect. Cochranea are under an ongoing speciation process, characterized by a fluctuation of population ranges in response to pulses of arid and humid periods during Quaternary times.  相似文献   

19.
Species richness on island or islandlike systems is a function of colonization, within-island speciation, and extinction. Here we evaluate the relative importance of the first two of these processes as a function of the biogeographical and ecological attributes of islands using the Galápagos endemic land snails of the genus Bulimulus, the most species-rich radiation of these islands. Species in this clade have colonized almost all major islands and are found in five of the six described vegetation zones. We use molecular phylogenetics (based on COI and ITS 1 sequence data) to infer the diversification patterns of extant species of Bulimulus, and multiple regression to investigate the causes of variation among islands in species richness. Maximum-likelihood, Bayesian, and maximum-parsimony analyses yield well-resolved trees with similar topologies. The phylogeny obtained supports the progression rule hypothesis, with species found on older emerged islands connecting at deeper nodes. For all but two island species assemblages we find support for only one or two colonization events, indicating that within-island speciation has an important role in the formation of species on these islands. Even though speciation through colonization is not common, island insularity (distance to nearest major island) is a significant predictor of species richness resulting from interisland colonization alone. However, island insularity has no effect on the overall bulimulid species richness per island. Habitat diversity (measured as plant species diversity), island elevation, and island area, all of which are indirect measures of niche space, are strong predictors of overall bulimulid land snail species richness. Island age is also an important independent predictor of overall species richness, with older islands harboring more species than younger islands. Taken together, our results demonstrate that the diversification of Galápagos bulimulid land snails has been driven by a combination of geographic factors (island age, size, and location), which affect colonization patterns, and ecological factors, such as plant species diversity, that foster within-island speciation.  相似文献   

20.
Although sexual reproduction is ubiquitous throughout nature, the molecular machinery behind it has been repeatedly disrupted during evolution, leading to the emergence of asexual lineages in all eukaryotic phyla. Despite intensive research, little is known about what causes the switch from sexual reproduction to asexuality. Interspecific hybridization is one of the candidate explanations, but the reasons for the apparent association between hybridization and asexuality remain unclear. In this study, we combined cross‐breeding experiments with population genetic and phylogenomic approaches to reveal the history of speciation and asexuality evolution in European spined loaches (Cobitis). Contemporary species readily hybridize in hybrid zones, but produce infertile males and fertile but clonally reproducing females that cannot mediate introgressions. However, our analysis of exome data indicates that intensive gene flow between species has occurred in the past. Crossings among species with various genetic distances showed that, while distantly related species produced asexual females and sterile males, closely related species produce sexually reproducing hybrids of both sexes. Our results suggest that hybridization leads to sexual hybrids at the initial stages of speciation, but as the species diverge further, the gradual accumulation of reproductive incompatibilities between species could distort their gametogenesis towards asexuality. Interestingly, comparative analysis of published data revealed that hybrid asexuality generally evolves at lower genetic divergences than hybrid sterility or inviability. Given that hybrid asexuality effectively restricts gene flow, it may establish a primary reproductive barrier earlier during diversification than other “classical” forms of postzygotic incompatibilities. Hybrid asexuality may thus indirectly contribute to the speciation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号