首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
S Dukan  S Dadon  D R Smulski    S Belkin 《Applied microbiology》1996,62(11):4003-4008
A series of plasmids, containing fusions of different stress promoters to lux reporter genes, was used in an attempt to monitor the defense circuits activated upon exposure of Escherichia coli to sublethal doses of free chlorine. A significant level of activation was exhibited by promoters of three heat shock genes (grpE, dnaK, and lon), in an rpoH-dependent manner. The promoter of micF, a gene under the control of the soxRS regulon, was also strongly induced, but not in a soxR mutant. This induction was not affected by sodA and sodB mutations, implying that it did not involve oxygen radical activity. Free-chlorine activation of both heat shock and soxRS regulons required an exposure of less then I s in duration. The oxyR or the SOS regulons were apparently not induced by free chlorine (as judged by lack of activation of katG and recA, respectively), and neither was the universal stress (uspA) protein.  相似文献   

4.
Oxidative stress is strongly implicated in a number of diseases, such as rheumatoid arthritis, inflammatory bowel disorders, and atherosclerosis, and its emerging as one of the most important causative agents of mutagenesis, tumorigenesis, and aging. Recent progress on the genetics and molecular biology of the cellular responses to oxidative stress, primarily in Escherichia coli and Salmonella typhimurium, is summarized. Bacteria respond to oxidative stress by invoking two distinct stress responses, the peroxide stimulon and the superoxide stimulon, depending on whether the stress is mediated by peroxides or the superoxide anion. The two stimulons each contain a set of more than 30 genes. The expression of a subset of genes in each stimulon is under the control of a positive regulatory element; these genes constitute the OxyR and SoxRS regulons. The schemes of regulation of the two regulons by their respective regulators are reviewed in detail, and the overlaps of these regulons with other stress responses such as the heat shock and SOS responses are discussed. The products of Oxy-R- and SoxRS-regulated genes, such as catalases and superoxide dismutases, are involved in the prevention of oxidative damage, whereas others, such as endonuclease IV, play a role in the repair of oxidative damage. The potential roles of these and other gene products in the defense against oxidative damage in DNA, proteins, and membranes are discussed in detail. A brief discussion of the similarities and differences between oxidative stress responses in bacteria and eukaryotic organisms concludes this review.  相似文献   

5.
The 70-kDa family of heat shock proteins plays an important role as molecular chaperones in unstressed and stressed cells. The constitutive member of the 70 family (hsc70) is crucial for the chaperoning function of unstressed cells, whereas the inducible form (hsp70) is important for allowing cells to cope with acute stressor insult, especially those affecting the protein machinery. In fish, the role of hsc70 in the cellular stress response process is less clear primarily because of the lack of a fish-specific antibody for hsc70 detection. In this study, we purified hsc70 to homogeneity from trout liver using a three-step purification protocol with differential centrifugation, ATP-agarose affinity chromatography and electroelution. Polyclonal antibodies to trout hsc70 generated in rabbits cross-reacted strongly with both purified trout hsc70 protein and also purified recombinant bovine hsc70. Two-dimensional electrophoresis followed by Western blotting confirmed that the isoelectric point of rainbow trout hsc70 was more acidic than hsp70. Using this antibody, we detected hsc70 content in the liver, heart, gill and skeletal muscle of unstressed rainbow trout. Primary cultures of trout hepatocytes subjected to a heat shock (+15 degrees C for 1 h) or exposed to either CuSO(4) (200 microM for 24 h), CdCl(2) (10 microM for 24 h) or NaAsO(2) (50 microM for 1 h) resulted in higher hsp70 accumulation over a 24-h period. However, hsc70 content showed no change with either heat shock or heavy metal exposure suggesting that hsc70 is not modulated by sublethal acute stressors in trout hepatocytes. Taken together, we have for the first time generated polyclonal antibodies specific to rainbow trout hsc70 and this antibody will allow for the characterization of the role of hsc70 in the cellular stress response process in fish.  相似文献   

6.
The accumulation in large amounts of bisnucleoside polyphosphates (Ap4X) after heat shock in Xenopus laevis oocytes or cultured hepatoma cells (HTC cells) is observed after exposure to temperatures of 45 degrees C or higher. The accumulation is a transient phenomenon, with the collapse in cellular ATP concentration severely affecting the rate of synthesis of Ap4X, allowing degrading activities to empty the pool of these compounds under prolonged heat shock. This accumulation of Ap4X to high levels, compared to the basic content, is only observed under conditions leading to irreversible damage, ultimately resulting in the death of the cell. It is shown that the increase in Ap4X after hyperthermia is due to the partial or almost complete inhibition of their degradation pathways, rather than to a stimulation of their rate of synthesis. Finally, the synthesis of heat-shock proteins could be observed under conditions which do not lead to important accumulation of Ap4X, therefore ruling out the possibility that these adenylylated nucleotides would behave as chemical signals ("alarmones") triggering the synthesis of heat-shock proteins. Nevertheless, on the basis of our earlier results (Guédon, G., Sovia, D., Ebel, J. P., Befort, D., and Remy, P. (1985) Embo J. 4, 3743-3749), it cannot be excluded that Ap4X might play a role in the regulation of the heat-shock response; this would, however, rely on variations in Ap4X concentrations which do not exceed a factor of 2.  相似文献   

7.
During heat shock, the main strategy of an organism is defense from denatured proteins. This is performed by chaperones that refold and proteases that cut abnormal proteins. In studying the sigma(32) and HrcA regulons in beta- and gamma-proteobacteria, we have found some new potential participants in the heat shock response and proposed the protein disulfide isomerase function for one of them. We describe the connection between the two regulons through cross-regulation of the HrcA repressor and sigma(32) in some beta-proteobacteria. Finally, we predict the binding signal for HrcA in epsilon-proteobacteria.  相似文献   

8.
9.
10.
11.
12.
13.
Recent studies are beginning to implicate sphingolipids in the heat stress response. In the yeast Saccharomyces cerevisiae, heat stress has been shown to activate de novo biosynthesis of sphingolipids, whereas in mammalian cells the sphingolipid ceramide has been implicated in the heat shock responses. In the current study, we found an increase in the ceramide mass of Molt-4 cells in response to heat shock, corroborating findings in HL-60 cells. Increased ceramide was determined to be from de novo biosynthesis by two major lines of evidence. First, the accumulation of ceramide was dependent upon the activities of both ceramide synthase and serine palmitoyltransferase. Second, pulse labeling studies demonstrated increased production of ceramide through the de novo biosynthetic pathway. Significantly, the de novo sphingolipid biosynthetic pathway was acutely induced upon heat shock, which resulted in a 2-fold increased flux in newly made ceramides within 1-2 min of exposure to 42.5 degrees C. Functionally, heat shock induced the dephosphorylation of the SR proteins, and this effect was demonstrated to be dependent upon the accumulation of de novo-produced ceramides. Thus, these studies disclose an evolutionary conserved activation of the de novo pathway in response to heat shock. Moreover, SR dephosphorylation is emerging as a specific downstream target of accumulation of newly made ceramides in mammalian cells.  相似文献   

14.
15.
AppppA , ApppGpp , AppppG , ApppG , and ApppA rapidly accumulate to high levels in Salmonella typhimurium following exposure to a variety of oxidizing agents, but not to a variety of other stresses. Among the agents inducing these adenylylated nucleotides are 1-chloro-2,4-dinitrobenzene, diamide, hydrogen peroxide, t-butyl hydroperoxide, N-ethyl maleimide, iodoacetamide, cadmium chloride, and a variety of quinones. Some of these oxidizing agents cause preferential synthesis of specific adenylylated nucleotides, e.g., N-ethyl maleimide induces ApppA and menadione induces ApppGpp . Our data, as well as other evidence in the literature, strongly suggest that oxidation stress is coupled to adenylylated nucleotide synthesis by aminoacyl-tRNA synthetases. Although adenylylated nucleotides are made by tRNA synthetases in vitro, their synthesis in vivo is not a simple consequence of inhibition of synthetase activity. Compounds that inhibit normal charging by aminoacyl-tRNA synthetases do not result in the synthesis of adenylylated nucleotides, nor do mutations in tRNA synthetase structural genes or tRNA structural, modifying, or processing genes. We propose that the family of adenylylated nucleotides are alarmones signaling the onset of oxidation stress, and that particular ones may be alarmones for specific oxidative stresses, e.g., ApppGpp for oxidative damage to amino acid biosynthesis.  相似文献   

16.
This study identifies stress proteins and antioxidant enzymes that may play a role in the survival strategies of the Florida red tide dinoflagellate, Karenia brevis. Heat shock protein 60 (Hsp 60), mitochondrial small heat shock protein (mitosHsp), chloroplastic small heat shock protein (chlsHsp), Mn superoxide dismutase (SOD), and Fe SOD were first identified by Western blotting. The induction of these proteins in laboratory cultures in response to elevated temperatures, hydrogen peroxide, lead, or elevated light intensities was next assessed. In parallel, F(V)/F(M), a measurement of photosynthetic efficiency and common proxy of cellular stress, was determined. Hsp 60, Fe SOD, and Mn SOD were induced following exposure to elevated temperatures, hydrogen peroxide, or lead. MitosHsp responded only to heat, whereas chlsHsp responded only to H(2)O(2)-induced stress. The expression of stress proteins and antioxidant enzymes appears to be a more sensitive indicator of heat or chemically induced stresses than F(V)/F(M). However, F(V)/F(M) decreased significantly in response to elevated light intensities that did not induce the expression of stress proteins. These results identify for the first time stress proteins and antioxidant enzymes in K. brevis, provide evidence for differential sensitivity of cellular organelles to various sources of stress, and confirm the presence of conserved stress responses observed across phyla in a dinoflagellate.  相似文献   

17.
Cadmium is toxic and carcinogenic to humans and animals. The testis and lung are the target organs for cadmium carcinogenesis. Heat shock proteins (HSPs) as well as metallothionein (MT) and glutathione (GSH) play an important role in protection against its toxicity. HSP32, also known as heme oxygenase-1, is a 32-kDa protein induced by heme, heavy metals, oxidative stresses, and heat. We investigated expression of the Hsp32 gene of various organs (the liver, lung, heart, stomach, kidney, and testis) in transgenic mice deficient in the MT-I and -II genes (MT-KO) and in control mice (MT-W) after an injection of cadmium chloride (CdCl2). Survival of MT-W mice after a subcutaneously injection of CdCl2 was higher than that of MT-KO mice, while no significant difference was observed in the level of GSH in each organ between MT-W and MT-KO mice. Northern blot analysis showed that the MT-I mRNA was more extensively induced in the liver, kidney, and heart than other organs 6 h after an injection of CdCl2 (30 micromol/kg body wt, sc). There was little increase of the MT-I mRNA in the testis when induced by CdCl2. Expression of the Hsp32 gene in the liver and kidney in response to CdCl2 was more extensively augmented in MT-KO mice than in MT-W mice. In the lung and testis, there was little induction and no augmentation in expression of the Hsp32 gene induced by CdCl2 in both MT-W and MT-KO mice. In the stomach, there was little induction of the Hsp32 mRNA in MT-W mice, but was increased in MT-KO mice. Immunohistochemical staining revealed that the HSP32 protein was strongly expressed in the kidney and liver of MT-W mice 24 h after an injection of CdCl2 (20 micromol/kg body wt, sc), while the expression of HSP32 protein was not increased in the testis. In metabolically active organs such as the liver and kidney, expression of the Hsp32 gene as well as the MT-I gene was extensively induced by cadmium in MT-W mice, and more eminently induced in MT-KO mice. We suggest that organs of low stress response to cadmium such as the testis and lung may be vulnerable target sites for cadmium toxicity and carcinogenesis.  相似文献   

18.
Many cells and organisms are rendered transiently resistant to lethal heat shock by short exposure to sublethal temperatures. This induced thermotolerance is thought to be related to increased amounts of heat shock proteins (HSPs) which, as molecular chaperones, protect cells from stress-induced damage. As part of a study on bivalve stress and thermotolerance, work was undertaken to examine the effects of sublethal heat shock on stress tolerance of juveniles of the northern bay scallop, Argopecten irradians irradians, in association with changes in the levels of cytoplasmic HSP70 and 40. Juvenile bay scallops heat-shocked at a sublethal temperature of 32 °C survived an otherwise lethal heat treatment at 35 °C for at least 7 days. As determined by ELISA, acquisition of induced thermotolerance closely paralleled HSP70 accumulation, whereas HSP40 accrual appeared less closely associated with thermotolerance. Quantification of scallop HSPs following lethal heat treatment, with or without conditioning, suggested a causal role for HSP70 in stress tolerance, with HSP40 contributing to a lesser, but significant extent. Overall, this study demonstrated that sublethal heat shock promotes survival of A. irradians irradians juveniles upon thermal stress and the results support the hypothesis that HSPs have a role in this induced thermotolerance. Exploitation of the induced thermotolerance response shows promise as a means to improve survival of bay scallops in commercial culture.  相似文献   

19.
A number of clinical conditions are known to result in the induction of heat shock proteins, but detailed studies on stress response have focused mostly on heat shock as a model. We have analyzed the induction and intracellular distribution of heat shock proteins in a reversible adenosine triphosphate (ATP) depletion model of renal ischemia. Two Hsp70 homologues, Hsp70 in the cytoplasm and BiP in the endoplasmic reticulum (ER) lumen, were found significantly induced during the recovery phase of ATP depletion. Other members of the heat shock protein family, such as Hsp90, constitutive Hsc70, and a related protein Hop60, were not induced. The induction of stress proteins on ATP depletion differed from that after heat shock in the kinds of proteins elaborated, their induction kinetics, and their intracellular distributions. Biochemical fractionation and indirect immunofluorescence experiments indicated that Hsp70 was predominantly cytoplasmic in the recovery phase of ischemia-like stress. Velocity sedimentation on sucrose gradients showed that induced Hsp70 sedimented as small, soluble complexes, ranging in size from 4S20,w to 8S20,w. The results suggest a role for induced Hsp70 that may be different from one of protecting aggregated proteins as under heat shock and emphasize the need for their characterization in other clinical conditions that result in stress response.  相似文献   

20.
Stress proteins have been proposed as markers of toxicity. This study investigated the sensitivity and specificity of stress proteins as markers of toxicity in primary hepatocyte cultures following exposure to two compounds, hydrazine and cadmium chloride (CdCl ). 2 Hepatocytes were exposed to increasing concentrations of hydrazine and CdCl for 2 h 2 and levels of the heat shock proteins HSP72/3, and HSP25 measured. In addition to this, ATP and GSH levels and LDH leakage were measured over the following 8 h. The results show that increasing concentrations of hydrazine caused dose-dependent decreases in ATP and GSH levels over 8 h. There was no change in the levels of HSP25 or HSP72/3 over that period. CdCl was found to significantly induce HSP72/3 at a concentration of 2 5 M when no other biochemical parameter was altered, levels were also elevated following administration of 10 M CdCl but ATP levels were found to be decreased at this 2 concentration. Levels of HSP25 were not increased following CdCl exposure at any 2 concentration. Higher concentrations of CdCl produced significant increases in LDH 2 leakage and depletion of intracellular levels of ATP and GSH. In addition to this levels of HSP25 and HSP72/3 were reduced to zero following administration of high concentrations of CdCl . In this study hydrazine does not induce either of the stress 2 proteins studied here whereas CdCl exposure causes the induction of HSP72/3 but not 2 HSP25. However it was determined that during the culture of primary hepatocytes basal levels of HSP25 and HSP72/3 were significantly increased when compared with levels determined in vivo . The results suggest that stress proteins may have the potential to be sensitive markers of toxicity in primary hepatocytes; however, the induction of individual stress proteins appears to be dependent upon the compound used. The apparent noninduction of the stress response by hydrazine and minor induction by CdCl might be 2 explained by the fact that whilst in culture the hepatocytes are under a continuous state of stress and therefore may not be able to elicit a full stress response following a chemical insult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号