首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cyanobacterial mats developing in oil-contaminated sabkhas along the African coasts of the Gulf of Suez and in the pristine Solar Lake, Sinai, were collected for laboratory studies. Samples of both mats showed efficient degradation of crude oil in the light, followed by development of an intense bloom of Phormidium spp. and Oscillatoria spp. Isolated cyanobacterial strains, however, did not degrade crude oil in axenic cultures. Strains of sulfate-reducing bacteria and aerobic heterotrophs were capable of degrading model compounds of aliphatic and aromatic hydrocarbons. Results indicate that degradation of oil was done primarily by aerobic heterotrophic bacteria. The oxygenic photosynthesis of oil-insensitive cyanobacteria supplied the molecular oxygen for the efficient aerobic metabolism of organisms, such as Marinobacter sp. The diurnal shifts in environmental conditions at the mat surface, from highly oxic conditions in the light to anaerobic sulfide-rich habitat in the dark, may allow the combined aerobic and anaerobic degradation of crude oil at the mat surface. Hence, coastal cyanobacterial mats may be used for the degradation of coastline oil spills. Oxygen microelectrodes detected a significant inhibition of photosynthetic activity subsequent to oil addition. This prevailed for a few hours and then rapidly recovered. In addition, shifts in bacterial community structure following exposure to oil were determined by denaturing gradient gel electrophoresis of PCR-amplified fractions of 16S rRNA from eubacteria, cyanobacteria and sulfate-reducing bacteria. Since the mats used for the present study were obtained from oil-contaminated environments, they were believed to be preequilibrated for petroleum remediation. The mesocosm system at Eilat provided a unique opportunity to study petroleum degradation by mats formed under different salinities (up to 21%). These mats, dominated by cyanobacteria, can serve as close analogues to the sabkhas contaminated during the Gulf War in Kuwait and Saudi Arabia. Electronic Publication  相似文献   

2.
Hydrocarbon biodegradation in hypersaline environments   总被引:3,自引:0,他引:3  
When mineral oil, hexadecane, and glutamate were added to natural samples of varying salinity (3.3 to 28.4%) from salt evaporation ponds and Great Salt Lake, Utah, rates of metabolism of these compounds decreased as salinity increased. Rate limitations did not appear to relate to low oxygen levels or to the availability of organic nutrients. Some oxidation of l-[U-C]glutamic acid occurred even at extreme salinities, whereas oxidation of [1-C]hexadecane was too low to be detected. Gas chromatographic examination of hexane-soluble components of tar samples from natural seeps at Rozel Point in Great Salt Lake demonstrated no evidence of biological oxidation of isoprenoid alkanes subject to degradation in normal environments. Some hexane-soluble components of the same tar were altered by incubation in a low-salinity enrichment culture inoculated with garden soil. Attempts to enrich for microorganisms in saline waters able to use mineral oil as a sole source of carbon and energy were successful below, but not above, about 20% salinity. This study strongly suggests a general reduction of metabolic rate at extreme salinities and raises doubt about the biodegradation of hydrocarbons in hypersaline environments.  相似文献   

3.
The diversity and function of aerobic heterotrophic bacteria (AHB) in cyanobacterial mats have been largely overlooked. We used culture-dependent and molecular techniques to explore the species diversity, degradative capacities and functional guilds of AHB in the photic layer (2mm) of an oil-polluted microbial mat from Saudi Arabia. Enrichment isolation was carried out at different salinities (5% and 12%) and temperatures (28 and 45 degrees C) and on various substrates (acetate, glycolate, Spirulina extract and crude oils). Counts of most probable number showed a numerical abundance of AHB in the range of 1.15-8.13x10(6) cellsg(-1) and suggested the presence of halotolerant and thermotolerant populations. Most of the 16S rRNA sequences of the obtained clones and isolates were phylogenetically affiliated to the groups Gammaproteobacteria, Bacteriodetes and Alphaproteobacteria. Groups like Deltaproteobacteria, Verrucomicrobia, Planctomycetes, Spirochaetes, Acidobacteria and Deinococcus-Thermus were only detected by cloning. The strains isolated on acetate and glycolate belonged to the genera Marinobacter, Halomonas, Roseobacter and Rhodobacter whereas the strains enriched on crude oil belonged to Marinobacter and Alcanivorax. Members of the Bacteriodetes group were only enriched on Spirulina extract indicating their specialization in the degradation of cyanobacterial dead cells. The substrate spectra of representative strains showed the ability of all AHB to metabolize cyanobacterial photosynthetic and fermentation products. However, the unique in situ conditions of the mat apparently favored the enrichment of versatile strains that grew on both the cyanobacterial exudates and the hydrocarbons. We conclude that AHB in cyanobacterial mats represent a diverse community that plays an important role in carbon-cycling within microbial mats.  相似文献   

4.
Aims: The primary goal of this research was to assess the biodegradation of benzene, toluene, ethylbenzene and xylenes in sediment from Great Salt Lake, near Rozel Point, UT. Methods and Results: An enrichment culture that degraded benzene or toluene as the sole carbon source at high salinity was developed from a sediment sample obtained from Rozel Point. The enrichment degraded benzene or toluene within 1, 2 and 5 weeks in the presence of 14%, 23% and 29% NaCl respectively. PCR studies using degenerate primers revealed that degradation occurred primarily via catechol and the meta‐cleavage pathway. Molecular analysis showed that the Gammaproteobacteria were the dominant members of the enrichment and that shifts in community composition occurred during benzene metabolism. Conclusions: This study demonstrated that micro‐organisms at Rozel Point have the ability to degrade hydrocarbons over a broad range of salinities (1–5 mol l?1 NaCl) and that the members of the Gammaproteobacteria class play an important role in the degradation process. Significance and Impact of the Study: These results are significant as little is known about the fate of petroleum seeps at Rozel Point. Also, the identity of microbes and the key enzymes involved in the degradation steps are important for understanding natural attenuation potential of hydrocarbons.  相似文献   

5.
Microbial communities from three Argentinean saline soils were extracted and tested for their ability to degrade diesel fuel in liquid culture at salinities between 0% and 25%. In each case, the degradation process was continuously monitored by measuring oxygen consumption. Two communities (CR1 and CR2) showed nearly equal degrees of degradation across a salinity range of 0%-10% (the former degrading about 63% of the diesel fuel and the latter about 70% after 53 and 80 d, respectively). Furthermore, the degree of degradation was not significantly lower in the presence of 17.5% salt (58% and 65% degraded, respectively). A third community (El Zorro) showed a maximum turnover at 5% salt (79% diesel fuel degraded) and significant degradation (66%) at a salinity of 10%. However, the degree of degradation by this community clearly dropped at 0% and 15% salt. None of the communities were able to degrade diesel fuel in the presence of 25% salt, but the living cell counts showed that components of the microbial population survived the long-term exposure. The surviving portion is obviously sufficient to allow substantial restoration of the original community, as verified by the BIOLOG method. Isolates of the CR1 community were identified as members of the genera Cellulomonas, Bacillus, Dietzia, and Halomonas. In light of our investigations, the bioremediation of contaminated saline soils should be quite possible if the salinity of the soil water is lower than 15% or if it is reduced below this limit by the addition of water.  相似文献   

6.
王虎  吴玲玲  周立辉  胡妍妍  马小魁 《生态学报》2014,34(11):2907-2915
从陕北地区石油污染土壤中分离鉴定得到两株不动杆菌属(Acinetobacter sp.)的高效石油降解菌A.sp 1和A.sp 2,分别从盐浓度、pH值、氮源、磷源和接种量等因素进行研究以确定其最佳石油降解条件,并进一步通过GC-MS(Gas ChromatographyMass Spectrometer)方法分析其在最佳条件下对原油组分的不同降解性能。结果显示:A.sp 1在盐浓度为1%、pH值为6—7、磷源为KH2PO4和K2HPO4、氮源为尿素和接种量为4%的条件下,最高降解率可达到60%。A.sp 2在盐浓度为1%、pH值为7—9、磷源为KH2PO4和K2HPO4、氮源为硝酸铵和接种量为8%的条件下,最高降解率可达到67%。GC-MS分析结果表明,菌株A.sp 1对石油烃类C21—C25有明显的降解效果,菌株A.sp 2对石油烃类C20—C30的降解效果较好。  相似文献   

7.
The effects of salinity fluctuation on bacterial diversity, rates of gross photosynthesis (GP) and oxygen consumption in the light (OCL) and in the dark (OCD) were investigated in three submerged cyanobacterial mats from a transect on an intertidal flat. The transect ran 1 km inland from the low water mark along an increasingly extreme habitat with respect to salinity. The response of GP, OCL and OCD in each sample to various salinities (65 per thousand, 100 per thousand, 150 per thousand and 200 per thousand) were compared. The obtained sequences and the number of unique operational taxonomic units showed clear differences in the mats' bacterial composition. While cyanobacteria decreased from the lower to the upper tidal mat, other bacterial groups such as Chloroflexus and Cytophaga/Flavobacteria/Bacteriodetes showed an opposite pattern with the highest dominance in the middle and upper tidal mats respectively. Gross photosynthesis and OCL at the ambient salinities of the mats decreased from the lower to the upper tidal zone. All mats, regardless of their tidal location, exhibited a decrease in areal GP, OCL and OCD rates at salinities > 100 per thousand. The extent of inhibition of these processes at higher salinities suggests an increase in salt adaptation of the mats microorganisms with distance from the low water line. We conclude that the resilience of microbial mats towards different salinity regimes on intertidal flats is accompanied by adjustment of the diversity and function of their microbial communities.  相似文献   

8.
The horseshoe crab Limulus polyphemus spawns in the mid- to upper intertidal zone where females deposit eggs in nests below the sediment surface. Although adult crabs generally inhabit subtidal regions of estuaries with salinities from 5 to 34 ppt, developing embryos and larvae within nests are often exposed to more extreme conditions of salinity and temperature during summer spawning periods. To test whether these conditions have a negative impact on early development and survival, we determined development time, survival, and molt cycle duration for L. polyphemus embryos and larvae raised at 20 combinations of salinity (range: 30-60 ppt) and temperature (range: 25-40 degrees C). Additionally, the effect of hyperosmotic and hypoosmotic shock on the osmolarity of the perivitelline fluid of embryos was determined at salinities between 5 and 90 ppt. The embryos completed their development and molted at salinities below 60 ppt, yet failed to develop at temperatures of 35 degrees C or higher. Larval survival was high at salinities of 10-70 ppt but declined significantly at more extreme salinities (i.e., 5, 80, and 90 ppt). Perivitelline fluid remained nearly isoosmotic over the range of salinities tested. Results indicate that temperature and salinity influence the rate of crab development, but only the extremes of these conditions have an effect on survival.  相似文献   

9.
Biodegradation of organic pollutants by halophilic bacteria and archaea   总被引:2,自引:0,他引:2  
Hypersaline environments are important for both surface extension and ecological significance. As all other ecosystems, they are impacted by pollution. However, little information is available on the biodegradation of organic pollutants by halophilic microorganisms in such environments. In addition, it is estimated that 5% of industrial effluents are saline and hypersaline. Conventional nonextremophilic microorganisms are unable to efficiently perform the removal of organic pollutants at high salt concentrations. Halophilic microorganisms are metabolically different and are adapted to extreme salinity; these microorganisms are good candidates for the bioremediation of hypersaline environments and treatment of saline effluents. This literature survey indicates that both the moderately halophilic bacteria and the extremely halophilic archaea have a broader catabolic versatility and capability than previously thought. A diversity of contaminating compounds is susceptible to be degraded by halotolerant and halophile bacteria. Nevertheless, significant research efforts are still necessary in order to estimate the true potential of these microorganisms to be applied in environmental processes and in the remediation of contaminated hypersaline ecosystems. This effort should be also focused on basic research to understand the overall degradation mechanism, to identify the enzymes involved in the degradation process and the metabolism regulation.  相似文献   

10.
The elimination of Salmonella charity and Escherichia coli from the Sydney rock oyster, Crassostrea commercialis, was examined during commercial purification of oysters under different water temperatures and salinities. Both organisms were rapidly eliminated at 18 to 22 degrees C. Purification was effective but slower at 24 to 27 degrees C and incomplete and inconsistent at temperatures below 17 degrees C. The oysters suffered stress and were not effectively purified at water salinities of 15 to 20% but were rapidly purified at 32 to 47% salinity. Winter-harvested and summer-harvested oysters were purified similarly in water at 18 to 22 degrees C and 32 to 36% salinity.  相似文献   

11.
The elimination of Salmonella charity and Escherichia coli from the Sydney rock oyster, Crassostrea commercialis, was examined during commercial purification of oysters under different water temperatures and salinities. Both organisms were rapidly eliminated at 18 to 22 degrees C. Purification was effective but slower at 24 to 27 degrees C and incomplete and inconsistent at temperatures below 17 degrees C. The oysters suffered stress and were not effectively purified at water salinities of 15 to 20% but were rapidly purified at 32 to 47% salinity. Winter-harvested and summer-harvested oysters were purified similarly in water at 18 to 22 degrees C and 32 to 36% salinity.  相似文献   

12.
Abstract: Production waters from 36 high temperature petroleum reservoirs were examined for the presence of thermophilic, fermentative microorganisms. The direct supplementation of production waters with glucose and either yeast extract, peptone, tryptone or casamino acid resulted in the isolation of thermophilic, fermentative microorganisms from 47% of the petroleum reservoirs examined. Three distinctive morphological groups were isolated from the production waters of petroleum reservoirs with depths ranging from 396–3048 metres, temperatures ranging from 21–130°C, salinities ranging from 2.8–128 gl−1 and pHs ranging from 6.0–8.5. Group 1 were pleomorphic rod-shaped bacteria, Group 2 were sheathed rod-shaped bacteria, and Group 3 were coccoid archaea. Partial characterisation of strains from one seawater-flooded petroleum reservoir and three non-waterflooded petroleum reservoirs tentatively identified some strains in Group 1 as members of the genera Thermoanaerobacter and Thermoanaerobacterium , Group 2 as members of the Thermotogales order, and Group 3 as members of the genus Thermococcus . Production water salinity determined the type of microorganisms that were isolated. Group 1 organisms were found primarily in petroleum reservoirs with salinities less than 30 g/l, while Group 2 and 3 organisms were found to dominate in more saline reservoirs. The successful isolation of thermophilic, fermentative microorganisms from petroleum reservoirs decreased significantly with increasing salinity and temperature. These findings support the existence of a deep biosphere where fermentative microorganisms are widespread.  相似文献   

13.
We examined the degradation of biphenyl and the commercial polychlorinated biphenyl (PCB) mixture Aroclor 1221 by indigenous Arctic soil microorganisms to assess both the response of the soil microflora to PCB pollution and the potential of the microflora for bioremediation. In soil slurries, Arctic soil microflora and temperate-soil microflora had similar potentials to mineralize [14C]biphenyl. Mineralization began sooner and was more extensive in slurries of PCB-contaminated Arctic soils than in slurries of uncontaminated Arctic soils. The maximum mineralization rates at 30 and 7 degrees C were typically 1.2 to 1.4 and 0.52 to 1.0 mg of biphenyl g of dry soil-1 day-1, respectively. Slurries of PCB-contaminated Arctic soils degraded Aroclor 1221 more extensively at 30 degrees C (71 to 76% removal) than at 7 degrees C (14 to 40% removal). We isolated from Arctic soils organisms that were capable of psychrotolerant (growing at 7 to 30 degrees C) or psychrophilic (growing at 7 to 15 degrees C) growth on biphenyl. Two psychrotolerant isolates extensively degraded Aroclor 1221 at 7 degrees C (54 to 60% removal). The soil microflora and psychrotolerant isolates degraded all mono-, most di-, and some trichlorobiphenyl congeners. The results suggest that PCB pollution selected for biphenyl-mineralizing microorganisms in Arctic soils. While low temperatures severely limited Aroclor 1221 removal in slurries of Arctic soils, results with pure cultures suggest that more effective PCB biodegradation is possible under appropriate conditions.  相似文献   

14.
We studied the microbial diversity of benthic cyanobacterial mats inhabiting a heavily polluted site in a coastal stream (Wadi Gaza) and monitored the microbial community response induced by exposure to and degradation of four model petroleum compounds in the laboratory. Phormidium- and Oscillatoria-like cyanobacterial morphotypes were dominant in the field. Bacteria belonging to different groups, mainly the Cytophaga-Flavobacterium-Bacteriodes group, the gamma and beta subclasses of the class Proteobacteria, and the green nonsulfur bacteria, were also detected. In slurry experiments, these communities efficiently degraded phenanthrene and dibenzothiophene completely in 7 days both in the light and in the dark. n-Octadecane and pristane were degraded to 25 and 34% of their original levels, respectively, within 7 days, but there was no further degradation until 40 days. Both cyanobacterial and bacterial communities exhibited noticeable changes concomitant with degradation of the compounds. The populations enriched by exposure to petroleum compounds included a cyanobacterium affiliated phylogenetically with Halomicronema. Bacteria enriched both in the light and in the dark, but not bacteria enriched in any of the controls, belonged to the newly described Holophaga-Geothrix-Acidobacterium phylum. In addition, another bacterial population, found to be a member of green nonsulfur bacteria, was detected only in the bacteria treated in the light. All or some of the populations may play a significant role in metabolizing the petroleum compounds. We concluded that the microbial mats from Wadi Gaza are rich in microorganisms with high biodegradative potential.  相似文献   

15.
Biodegradation and bioremediation of hydrocarbons in extreme environments   总被引:26,自引:0,他引:26  
Many hydrocarbon-contaminated environments are characterized by low or elevated temperatures, acidic or alkaline pH, high salt concentrations, or high pressure, Hydrocarbon-degrading microorganisms, adapted to grow and thrive in these environments, play an important role in the biological treatment of polluted extreme habitats. The biodegradation (transformation or mineralization) of a wide range of hydrocarbons, including aliphatic, aromatic, halogenated and nitrated compounds, has been shown to occur in various extreme habitats. The biodegradation of many components of petroleum hydrocarbons has been reported in a variety of terrestrial and marine cold ecosystems. Cold-adapted hydrocarbon degraders are also useful for wastewater treatment. The use of thermophiles for biodegradation of hydrocarbons with low water solubility is of interest, as solubility and thus bioavailability, are enhanced at elevated temperatures. Thermophiles, predominantly bacilli, possess a substantial potential for the degradation of environmental pollutants, including all major classes. Indigenous thermophilic hydrocarbon degraders are of special significance for the bioremediation of oil-polluted desert soil. Some studies have investigated composting as a bioremediation process. Hydrocarbon biodegradation in the presence of high salt concentrations is of interest for the bioremediation of oil-polluted salt marshes and industrial wastewaters, contaminated with aromatic hydrocarbons or with chlorinated hydrocarbons. Our knowledge of the biodegradation potential of acidophilic, alkaliphilic, or barophilic microorganisms is limited.  相似文献   

16.
Aims:  To isolate and characterize an efficient hydrocarbon-degrading bacterium under hypersaline conditions, from a Tunisian off-shore oil field.
Methods and Results:  Production water collected from 'Sercina' petroleum reservoir, located near the Kerkennah island, Tunisia, was used for the screening of halotolerant or halophilic bacteria able to degrade crude oil. Bacterial strain C2SS100 was isolated after enrichment on crude oil, in the presence of 100 g l−1 NaCl and at 37°C. This strain was aerobic, Gram-negative, rod-shaped, motile, oxidase + and catalase +. Phenotypic characters and phylogenetic analysis based on the 16S rRNA gene of the isolate C2SS100 showed that it was related to members of the Halomonas genus. The degradation of several compounds present in crude oil was confirmed by GC–MS analysis. The use of refined petroleum products such as diesel fuel and lubricating oil as sole carbon source, under the same conditions of temperature and salinity, showed that significant amounts of these heterogenic compounds could be degraded. Strain C2SS100 was able to degrade hexadecane (C16). During growth on hexadecane, cells surface hydrophobicity and emulsifying activity increased indicating the production of biosurfactant by strain C2SS100.
Conclusions:  A halotolerant bacterial strain Halomonas sp. C2SS100 was isolated from production water of an oil field, after enrichment on crude oil. This strain is able to degrade hydrocarbons efficiently. The mode of hydrocarbon uptake is realized by the production of a biosurfactant which enhances the solubility of hydrocarbons and renders them more accessible for biodegradation.
Significance and Impact of the Study:  The biodegradation potential of the Halomonas sp. strain C2SS100 gives it an advantage for possibly application on bioremediation of water, hydrocarbon-contaminated sites under high-salinity level.  相似文献   

17.
This research was focused on the selection, growth and identification of SRB from soils that were subjected to long-term activity of brine, and an evaluation of mineral phases formed during the biodegradation of organic compounds and sulphate reduction. Isolated communities of anaerobic microorganisms were incubated on Postgate C medium with lactate and/or ethanol as the sole carbon source and were adapted for growth at 4% NaCl. Active reduction of sulphates with simultaneous biodegradation of organic compounds was observed in all cultures. The largest reduction of sulphates was noted in cultures with lactate as the sole carbon source; it reached 1438 mg/L, which corresponds to a 43% reduction of sulphates introduced to the medium. SRB activity in the biodegradation of organic compounds varied between 20 and 80% and depended on the level of salinity of the environment in which the SRB communities were isolated, and on the electron donor applied. The presence of biotransformation products in the post-culture deposits in the form of elemental sulphur reflects the activity of the communities. Additionally, the influence of selected communities on the salinity index was analyzed. Active SRB communities decreased the salinity of the environment by as much as 50%. Sulphate-reducing bacteria are an important group of anaerobic microorganisms, especially considering their participation in such geological processes as mineral precipitation and mineralization of organic matter in extreme environmental conditions, including high salinity.  相似文献   

18.
Nonylphenol (NP) is an estrogenic pollutant which is widely present in the aquatic environment. Biodegradation of NP can reduce the toxicological risk. In this study, aerobic biodegradation of NP in river sediment was investigated. The sediment used for the microcosm experiments was aged polluted with NP. The biodegradation of NP in the sediment occurred within 8 days with a lag phase of 2 days at 30°C. During the biodegradation, nitro-nonylphenol metabolites were formed, which were further degraded to unknown compounds. The attached nitro-group originated from the ammonium in the medium. Five subsequent transfers were performed from original sediment and yielded a final stable population. In this NP-degrading culture, the microorganisms possibly involved in the biotransformation of NP to nitro-nonylphenol were related to ammonium-oxidizing bacteria. Besides the degradation of NP via nitro-nonylphenol, bacteria related to phenol-degrading species, which degrade phenol via ring cleavage, are abundantly present.  相似文献   

19.
The microbial degradation of tensile test pieces made of poly(3-hydroxybutyrate) [P(3HB)] or a copolymer of 90% 3-hydroxybutyric acid and 10% 3-hydroxyvaleric acid was studied in soils incubated at a constant temperature of 15, 28, or 40 degrees C for up to 200 days. In addition, hydrolytic degradation in sterile buffer at temperatures ranging from 4 to 55 degrees C was monitored for 98 days. Degradation was measured through loss of weight (surface erosion), molecular weight, and mechanical strength. While no weight loss was recorded in sterile buffer, samples incubated in soils were degraded at an erosion rate of 0.03 to 0.64% weight loss per day, depending on the polymer, the soil, and the incubation temperature. The erosion rate was enhanced by incubation at higher temperatures, and in most cases the copolymer lost weight at a higher rate than the homopolymer. The molecular weights of samples incubated at 40 degrees C in soils and those incubated at 40 degrees C in sterile buffer decreased at similar rates, while the molecular weights of samples incubated at lower temperatures remained almost unaffected, indicating that molecular weight decrease is due to simple hydrolysis and not to the action of biodegrading microorganisms. The degradation resulted in loss of mechanical properties. From the samples used in the biodegradation studies, 295 dominant microbial strains capable of degrading P (3HB) and the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer in vitro were isolated and identified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Cold environments, including polar and alpine regions, are colonized by a wide diversity of microorganisms able to thrive at low temperatures. There is evidence of a wide range of metabolic activities in alpine cold ecosystems. Like polar microorganisms, alpine microorganisms play a key ecological role in their natural habitats for nutrient cycling, litter degradation, and many other processes. A number of studies have demonstrated the capacity of alpine microorganisms to degrade efficiently a wide range of hydrocarbons, including phenol, phenol-related compounds and petroleum hydrocarbons, and the feasibility of low-temperature bioremediation of European alpine soils by stimulating the degradation capacity of indigenous microorganisms has also been shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号