首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kull F  Ohlson E  Lind B  Haeggström JZ 《Biochemistry》2001,40(42):12695-12703
Leukotriene A(4) hydrolase in mammals is a bifunctional zinc metalloenzyme that catalyzes the hydrolysis of leukotriene A(4) into the proinflammatory mediator leukotriene B(4), and also possesses an aminopeptidase activity. Recently we cloned and characterized an leukotriene A(4) hydrolase from Saccharomyces cerevisiae as a leucyl aminopeptidase with an epoxide hydrolase activity. Here we show that S. cerevisiae leukotriene A(4) hydrolase is a metalloenzyme containing one zinc atom complexed to His-340, His-344, and Glu-363. Mutagenetic analysis indicates that the aminopeptidase activity follows a general base mechanism with Glu-341 and Tyr-429 as the base and proton donor, respectively. Furthermore, the yeast enzyme hydrolyzes leukotriene A(4) into three compounds, viz., 5S,6S-dihydroxy-7,9-trans-11,14-cis-eicosatetraenoic acid, leukotriene B(4), and Delta(6)-trans-Delta(8)-cis-leukotriene B(4), with a relative formation of 1:0.2:0.1. In addition, exposure of S. cerevisiae leukotriene A(4) hydrolase to leukotriene A(4) selectively inactivates the epoxide hydrolase activity with a simultaneous stimulation of the aminopeptidase activity. Moreover, kinetic analyses of wild-type and mutated S. cerevisiae leukotriene A(4) hydrolase suggest that leukotriene A(4) binds in one catalytic mode and one tight-binding, regulatory mode. Exchange of a Phe-424 in S. cerevisiae leukotriene A(4) hydrolase for a Tyr, the corresponding residue in human leukotriene A(4) hydrolase, results in a protein that converts leukotriene A(4) into leukotriene B(4) with an improved efficiency and specificity. Hence, by a single point mutation, we could make the active site better suited to bind and turn over the substrate leukotriene A(4), thus mimicking a distinct step in the molecular evolution of S. cerevisiae leukotriene A(4) hydrolase toward its mammalian counterparts.  相似文献   

2.
Inhibition of leukotriene A4 hydrolase/aminopeptidase by captopril   总被引:3,自引:0,他引:3  
Captopril ((2S)-1-(3-mercapto-2-methyl-propionyl)-L-proline) inhibited the bifunctional, Zn(2+)-containing enzyme leukotriene A4 hydrolase/aminopeptidase reversibly and competitively with Ki = 6.0 microM for leukotriene B4 formation and Ki = 60 nM for L-lysine-p-nitroanilide hydrolysis at pH 8. Inhibition was independent of pH between pH 7 and 8, the optimum range for each catalytic activity. Half-maximal inhibition of leukotriene B4 formation by intact erythrocytes and neutrophils required 50 and 88 microM captopril, respectively. In neutrophils and platelets neither 5(S)-hydroxyeicosatetraenoic acid, 12(S)-hydroxyeicosatetraenoic acid, nor leukotriene C4 formation were reduced, indicating selective inhibition of leukotriene A4 hydrolase/aminopeptidase, not 5-lipoxygenase, 12-lipoxygenase, or leukotriene C4 synthase. In whole blood, captopril inhibited leukotriene B4 formation with an accompanying redistribution of substrate toward formation of cysteinyl leukotrienes. The decrease in leukotriene B4 was more substantial than the corresponding increase in cysteinyl leukotrienes suggesting that nonenzymatic hydration predominates over transcellular metabolism of leukotriene A4 by platelets during selective inhibition of leukotriene A4 hydrolase. Enalapril dicarboxylic acid and Glu-Trp-Pro-Arg-ProGln-Ile-Pro-Pro which inhibit angiotensin-converting enzyme: angiotensin I, bradykinin, and N-[3-(2-furyl)acryloyl]Phe-Gly-Gly which are substrates; and chloride ions which activate angiotensin-converting enzyme did not modulate leukotriene A4 hydrolase/aminopeptidase activity. The results indicate that: (i) the sulfhydryl group of captopril is an important determinant for inhibition of leukotriene A4 hydrolase/aminopeptidase, probably by binding to an active site Zn2+; (ii) aminopeptidase and leukotriene A4 hydrolase display differential susceptibility to inhibition; (iii) there is minimal functional similarity between angiotensin-converting enzyme (peptidyl dipeptidase) and leukotriene A4 hydrolase/aminopeptidase; (iv) captopril may be a useful prototype to identify more potent and selective leukotriene A4 hydrolase inhibitors.  相似文献   

3.
The synthesis of leukotriene B(4) from arachidonic acid requires the sequential action of two enzymes: 5-lipoxygenase and leukotriene A(4) hydrolase. 5-Lipoxygenase is known to be present in the cytoplasm of some leukocytes and able to accumulate in the nucleoplasm of others. In this study, we asked if leukotriene A(4) hydrolase co-localizes with 5-lipoxygenase in different types of leukocytes. Examination of rat basophilic leukemia cells by both immunocytochemistry and immunofluorescence revealed that leukotriene A(4) hydrolase, like 5-lipoxygenase, was most abundant in the nucleus, with only minor occurrences in the cytoplasm. The finding of abundant leukotriene A(4) hydrolase in the soluble nuclear fraction was substantiated by two different cell fractionation techniques. Leukotriene A(4) hydrolase was also found to accumulate together with 5-lipoxygenase in the nucleus of alveolar macrophages. This result was obtained using both in situ and ex vivo techniques. In contrast to these results, peripheral blood neutrophils contained both leukotriene A(4) hydrolase and 5-lipoxygenase exclusively in the cytoplasm. After adherence of neutrophils, 5-lipoxygenase was rapidly imported into the nucleus, whereas leukotriene A(4) hydrolase remained cytosolic. Similarly, 5-lipoxygenase was localized in the nucleus of neutrophils recruited into inflamed appendix tissue, whereas leukotriene A(4) hydrolase remained cytosolic. These results demonstrate for the first time that leukotriene A(4) hydrolase can be accumulated in the nucleus, where it co-localizes with 5-lipoxygenase. As with 5-lipoxygenase, the subcellular distribution of leukotriene A(4) hydrolase is cell-specific and dynamic, but differences in the mechanisms regulating nuclear import must exist. The degree to which these two enzymes are co-localized may influence their metabolic coupling in the conversion of arachidonic acid to leukotriene B(4).  相似文献   

4.
The leukotriene A(4) hydrolase enzyme is a dual functioning enzyme with the following two catalytic activities: an epoxide hydrolase function that transforms the lipid metabolite leukotriene A(4) to leukotriene B(4) and an aminopeptidase function that hydrolyzes short peptides. To date, all drug discovery efforts have focused on the epoxide hydrolase activity of the enzyme, because of extensive biological characterization of the pro-inflammatory properties of its metabolite, leukotriene B(4). Herein, we have designed a small molecule, 4-methoxydiphenylmethane, as a pharmacological agent that is bioavailable and augments the aminopeptidase activity of the leukotriene A(4) hydrolase enzyme. Pre-clinical evaluation of our drug showed protection against intranasal elastase-induced pulmonary emphysema in murine models.  相似文献   

5.
In mammals, leukotriene A(4) hydrolase is a bifunctional zinc metalloenzyme that catalyzes hydrolysis of leukotriene A(4) into the proinflammatory leukotriene B(4) and also possesses an arginyl aminopeptidase activity. We have cloned, expressed, and characterized a protein from Saccharomyces cerevisiae that is 42% identical to human leukotriene A(4) hydrolase. The purified protein is an anion-activated leucyl aminopeptidase, as assessed by p-nitroanilide substrates, and does not hydrolyze leukotriene A(4) into detectable amounts of leukotriene B(4). However, the S. cerevisiae enzyme can utilize leukotriene A(4) as substrate to produce a compound identified as 5S,6S-dihydroxy-7,9-trans-11, 14-cis-eicosatetraenoic acid. Both catalytic activities are inhibited by 3-(4-benzyloxyphenyl)-2-(R)-amino-1-propanethiol (thioamine), a competitive inhibitor of human leukotriene A(4) hydrolase. Furthermore, the peptide cleaving activity of the S. cerevisiae enzyme was stimulated approximately 10-fold by leukotriene A(4) with kinetics indicating the presence of a lipid binding site. Nonenzymatic hydrolysis products of leukotriene A(4), leukotriene B(4), arachidonic acid, or phosphatidylcholine were without effect. Moreover, leukotriene A(4) could displace the inhibitor thioamine and restore maximal aminopeptidase activity, indicating that the leukotriene A(4) binding site is located at the active center of the enzyme. Hence, the S. cerevisiae leukotriene A(4) hydrolase is a bifunctional enzyme and appears to be an early ancestor to mammalian leukotriene A(4) hydrolases.  相似文献   

6.
The epoxide 5(S) trans-5,6 oxido, 7,9 trans-11,14,17 cis eicosatetraenoic acid (leukotriene A5) was chemically synthesized and demonstrated to be both a substrate and an inhibitor of partially purified rat and human LTA4 hydrolase. Both rat and human LTA4 hydrolase utilized leukotriene A5 less effectively as a substrate than leukotriene A4. Incubation of leukotriene A5 (10 microM) or leukotriene A4 (10 microM) with rat neutrophils demonstrated formation of 123 pmol LTB5/min/10(7) cells and 408 pmol LTB4/min/10(7) cells respectively. Purified rat neutrophil LTA4 hydrolase incubated with 100 microM leukotriene A5 produced 22 nmol LTB5/min/mg protein and when incubated with 100 microM leukotriene A4 produced 50 nmol LTB4/min/mg protein. Human neutrophil LTA4 hydrolase incubated with 100 microM leukotriene A5 produced 24 nmol LTB5/min/mg protein and when incubated with 100 microM leukotriene A4 produced 52 nmol LTB4/min/mg protein. Leukotriene A5 was an inhibitor of the formation of leukotriene B4 from leukotriene A4 by both the rat and human neutrophil LTA4 hydrolase. Excess leukotriene A5 prevented covalent coupling of [3H] leukotriene A4 to LTA4 hydrolase suggesting inhibition may involve covalent coupling of leukotriene A5 to the LTA4 hydrolase.  相似文献   

7.
Analysis of leukotriene B4 production by purified rat and human neutrophil leukotriene (LT) A4 hydrolases in the presence of 5(S)-trans-5,6-oxido-7,9-trans-11-cis-eicosatrienoic acid (leukotriene A3) demonstrated that this epoxide is a potent inhibitor of LTA4 hydrolase. Insignificant amounts of 5(S), 12(R)-dihydroxy-6-cis-8,10-trans-eicosatrienoic acid (leukotriene B3) were formed by incubation of rat neutrophils with leukotriene A3 or by the purified rat and human LTA4 hydrolases incubated with leukotriene A3. Leukotriene A3 was shown to be a potent inhibitor of leukotriene B4 production by rat neutrophils and also by purified rat and human LTA4 hydrolases. Covalent coupling of [3H]leukotriene A4 to both rat and human neutrophil LTA4 hydrolases was shown, and this coupling was inhibited by preincubation of the enzymes with leukotriene A4. Preincubation of rat neutrophils with leukotriene A3 also prevented labeling of LTA4 hydrolase by [3H]leukotriene A4. This result indicates that leukotriene A3 prevents covalent coupling of the substrate leukotriene A4 and inhibits the production of leukotriene B4 by blocking the binding of leukotriene A4 to the enzyme.  相似文献   

8.
Analysis of neutrophil phospholipids from rats fed an essential fatty acid-deficient diet revealed a 33% reduction in arachidonate and a 90% reduction in linoleate compared to neutrophil phospholipids of rats fed a normal diet. The neutrophil phospholipids from rats fed the essential fatty acid-deficient diet also contained significant amounts of 5,8,11-eicosatrienoate, a fatty acid not found in the neutrophils of rats fed a normal diet. Analysis of the production of leukotrienes of the B series by ionophore-stimulated neutrophils from rats fed an essential fatty acid-deficient diet revealed a 87% reduction in leukotriene B4 compared to neutrophils from rats fed a normal diet even though the arachidonate content was reduced by only 34%. Essential fatty acid-deficient neutrophils converted endogenous 5,8,11-eicosatrienoic acid to leukotriene A3 and its nonenzymatic degradation products, but little or no leukotriene B3 was formed. Neutrophils from rats fed a normal diet incubated with ionophore and exogenous 5,8,11-eicosatrienoate also produced leukotriene A3 and its nonenzymatic degradation products but little or no leukotriene B3. Exogenous 5,8,11-eicosatrienoate incubated with ionophore-stimulated normal neutrophils caused a dose-dependent inhibition of leukotriene A hydrolase resulting in diminished production of leukotriene B4 from endogenous arachidonate. Assays of leukotriene A hydrolase in the 10,000 X g supernatant fraction of a homogenate of RBL-1 cells revealed that a lipoxygenase metabolite of 5,8,11-eicosatrienoate rather than 5,8,11-eicosatrienoate itself is the inhibitor of leukotriene A hydrolase. Thus the finding that leukotriene B4 production by neutrophils from essential fatty acid-deficient rats is diminished out of proportion to the decrease in arachidonate content appears to be due to inhibition of leukotriene A hydrolase by a lipoxygenase metabolite.  相似文献   

9.
Human fibroblasts in cell culture converted the epoxide intermediate leukotriene A4 into the potent chemotaxin leukotriene B4. The identity of leukotriene B4 was ascertained by its mobility in reverse-phase high performance liquid chromatography, ultraviolet spectroscopy and gas chromatography/mass spectrometry. The presence of the enzyme responsible for the conversion (i.e. leukotriene A4 hydrolase), as well as the corresponding mRNA, were demonstrated by Western and Northern blot analyses. Leukotriene-A4-hydrolase enzyme activity, protein and mRNA were all enhanced (approximately threefold) in human fibroblasts that had been transformed by simian virus 40.  相似文献   

10.
Leukotriene A4 hydrolase was rapidly and extensively purified from rat neutrophils using anion exchange and gel filtration high-pressure liquid chromatography. The enzyme which converts the allylic epoxide leukotriene A4 to the 5,12-dihydroxyeicosatetraenoic acid leukotriene B4 was localized in the cytosolic fraction and exhibited an optimum activity at pH 7.8 and an apparent Km for leukotriene A4 between 2 X 10(-5) and 3 X 10(-5) M. The purified leukotriene A4 hydrolase was shown to have a molecular weight of 68 000 on sodium dodecylsulfate polyacrylamide gel electrophoresis and of 50 000 by gel filtration. The molecular weight and monomeric native form of this enzyme are unique characteristics which distinguish leukotriene A4 hydrolase from previously purified epoxide hydrolases.  相似文献   

11.
Leukotriene A4 hydrolase in human leukocytes. Purification and properties   总被引:17,自引:0,他引:17  
Leukotriene A4 hydrolase, a soluble enzyme catalyzing hydrolysis of the allylic epoxide leukotriene A4 to the dihydroxy acid leukotriene B4, was purified to apparent homogeneity from human leukocytes. The enzymatic reaction obeyed Michaelis-Menten saturation kinetics with respect to varying concentrations of leukotriene A4. An apparent KM value ranging between 20 and 30 microM was deduced from Eadie-Hofstee plots. Physical properties including molecular weight (68,000-70,000), amino acid composition, and aminoterminal sequence were determined. It was indicated that leukotriene A4 hydrolase is a monomeric protein, distinct from previously described epoxide hydrolases in liver.  相似文献   

12.
Human B and T lymphocytes convert leukotriene A4 into leukotriene B4   总被引:1,自引:0,他引:1  
Incubation of human tonsillar B lymphocytes and peripheral blood T lymphocytes with leukotriene A4 led to the formation of leukotriene B4. The purity of these cell suspensions was more than 99%, containing less than 0.5% monocytes. Incubation of purified B or T lymphocytes with the calcium ionophore A23187 did not lead to the formation of any detectable amounts of leukotrienes. Several established cell lines of B and T lymphocytic origin were also found to convert leukotriene A4 into leukotriene B4, showing that monoclonal lymphocytic cells possess leukotriene A4 hydrolase activity.  相似文献   

13.
Leukotriene A4, conversion to leukotriene B4 in human T-cell lines   总被引:1,自引:0,他引:1  
Human T-cell lines (HSB, MOLT-4 and CCRF-CEM) produced leukotriene B4 when incubated with leukotriene A4. The product was characterized by chromatographic properties, UV-spectroscopy and gas chromatography mass spectrometry. About 10 pmol of leukotriene B4 was obtained per 10(6) cells. When incubated with arachidonic acid plus the calcium ionophore A23187 however, no leukotriene B4 was found, indicating that the T-cell lines lack 5-lipoxygenase yet contain LTA4 hydrolase.  相似文献   

14.
Leukotriene A(4) hydrolase/aminopeptidase is a bifunctional zinc metalloenzyme that converts the fatty acid epoxide leukotriene A(4) into leukotriene B(4), a potent chemoattractant and immune-modulating lipid mediator. Recently, the structure of leukotriene A(4) hydrolase revealed that Glu-271, which belongs to a conserved GXMEN motif in the M1 family of zinc peptidases, and Gln-136 are located at the active site. Here we report that mutagenetic replacements of Glu-271, but not Gln-136, abrogate both catalytic activities of leukotriene A(4) hydrolase. Furthermore, the 2.1 A crystal structure of [E271Q]leukotriene A(4) hydrolase revealed minimal conformational changes that could not explain the loss of enzyme function. We propose that the carboxylate of Glu-271 participates in an acid-induced opening of the epoxide moiety of leukotriene A(4) and formation of a carbocation intermediate. Moreover, Glu-271 appears to act as an N-terminal recognition site and may potentially stabilize the transition-state during turnover of peptides, a property that most likely pertains to all members of the M1 family of zinc aminopeptidases. Hence, Glu-271 is a unique example of an amino acid, which has dual and separate functions in two different catalytic reactions, involving lipid and peptide substrates, respectively.  相似文献   

15.
Leukotriene A4 hydrolase was quantitated by radioimmunoassay, in extracts from eight human tissues. The enzyme was detectable in all tissues, with the highest level (2.6 mg per g soluble protein) in leukocytes, followed by lung and liver. The polyclonal antiserum did not cross-react with cytosolic epoxide hydrolase purified from mouse or human liver. When incubated with leukotriene A4, formation of leukotriene B4 was evident in all tissues. Furthermore, enzymatic formation of (5S,6R)-dihydroxy-7,9-trans-11,14-cis-eicosatetraenoic acid from leukotriene A4, was found in extracts from liver, kidney and intestines.  相似文献   

16.
Enzymic Synthesis of Leukotriene B4 in Guinea Pig Brain   总被引:1,自引:8,他引:1  
Leukotriene B4 [5(S), 12(R)-dihydroxy-6, 14-cis-8,10-trans-eicosatetraenoic acid] was obtained from endogenous arachidonic acid when slices of the guinea pig brain cortex were incubated with the calcium ionophore A 23187. Enzymes involved in its synthesis, arachidonate 5-lipoxygenase [arachidonic acid to 5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid and subsequently to leukotriene A4] and leukotriene A4 hydrolase (leukotriene A4 to B4), were present in the cytosol fraction. Arachidonate 5-lipoxygenase was Ca2+-dependent, and was stimulated by ATP and the microsomal membrane, as was noted for the enzyme from mast cells. The lipid hydroperoxides stimulated 5-lipoxygenase by four- to sixfold. The leukotriene A4 hydrolase activity was rich in brain, and the specific activity (0.4 nmol/min/mg of protein) was much the same as that of guinea pig leukocytes. High activities of these enzymes were detected in the olfactory bulb, pituitary gland, hypothalamus, and cerebral cortex. Since leukotriene B4 is enzymically synthesized in the brain, possible roles related to neuronal functions or dysfunctions deserve to be examined.  相似文献   

17.
Cytosols of rat and guinea pig liver and of human placenta were screened for their capacity to catalyze the conversion of racemic leukotriene A4 into 5S, 12R-dihydroxy-(Z,E,E,Z)-6,8,10,14-eicosatetraenoic acid (leukotriene B4). The epoxide hydrolase activities showed some specificity for the 5S,6S-oxido-(E,E,Z,Z)-7,9,11,14-eicosatetraenoic acid (LTA4) and produced mixtures of leukotriene B4 and its enantiomer containing up to 78-87% of leukotriene B4.  相似文献   

18.
Leukotriene A4 hydrolase: an epoxide hydrolase with peptidase activity   总被引:6,自引:0,他引:6  
Purified leukotriene A4 hydrolase from human leukocytes is shown to exhibit peptidase activity towards the synthetic substrates alanine-4-nitroanilide and leucine-4-nitroanilide. The enzymatic activity is abolished after heat treatment (70 degrees C, 30 min). At 37 degrees C these substrates are hydrolyzed at a rate of 380 and 130 nmol/mg/min, respectively, and there is no enzyme inhibition during catalysis. Apo-leukotriene A4 hydrolase, obtained by removal of the intrinsic zinc atom, exhibits only a low peptidase activity which can be restored by the addition of stoichiometric amounts of zinc. Reconstitution of the apoenzyme with cobalt results in a peptidase activity which exceeds that of enzyme reactivated with zinc. Preincubation of the native enzyme with leukotriene A4 reduces the peptidase activity. Semipurified preparations of bovine intestinal aminopeptidase and porcine kidney aminopeptidase do not hydrolyze leukotriene A4 into leukotriene B4.  相似文献   

19.
Mouse liver homogenates transformed leukotriene A4 into a 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acid. This novel enzymatic metabolite of leukotriene A4 was characterized by physical means including ultraviolet spectroscopy, high performance liquid chromatography, and gas chromatography-mass spectrometry. After subcellular fractionation, the enzymatic activity was mostly recovered in the 105,000 X g supernatant and 20,000 X g pellet. Heat treatment (80 degrees C, 10 min) or digestion with a proteolytic enzyme abolished the enzymatic activity in the high speed supernatant. A purified cytosolic epoxide hydrolase from mouse liver also transformed leukotriene A4 into a 5,6-dihydroxyeicosatetraenoic acid with the same physico-chemical characteristics as the compound formed in crude cytosol, but not into leukotriene B4, a compound previously reported to be formed in liver cytosol (Haeggstr?m, J., R?dmark, O., and Fitzpatrick, F.A. (1985) Biochim. Biophys. Acta 835, 378-384). These findings suggest a role for leukotriene A4 as an endogenous substrate for cytosolic epoxide hydrolase, an enzyme earlier characterized by xenobiotic substrates. Furthermore, they indicate that leukotriene A4 hydrolase in liver cytosol is a distinct enzyme, separate from previously described forms of epoxide hydrolases in liver.  相似文献   

20.
Leukotriene A4-hydrolase activity in guinea pig and human liver   总被引:3,自引:0,他引:3  
Guinea pig and human liver homogenates transformed leukotriene A4 into leukotriene B4. In both species, the enzymatic activity was recovered in the 105000 X g supernatant, and it was found to be susceptible to heat treatment (56 degrees C, 1 h). Digestion with a proteolytic enzyme also resulted in loss of enzymatic activity. The formation of leukotriene B4 was pH-dependent, with an optimum between pH 7 and pH 8.5. In addition, two other organs from the guinea-pig, lungs and kidneys, contained leukotriene A4-hydrolase activity. The identity of leukotriene B4 was ascertained by high-performance liquid chromatography, ultraviolet spectrometry, gas chromatography-mass spectrometry and bioassay. We have recently demonstrated the presence of leukotriene A4-hydrolase activity in mammalian plasma (Fitzpatrick et al. (1983) Proc. Natl. Acad. Sci. USA 80, 5425-5429). The results of the present study suggest several possible origins of this plasma leukotriene A4 hydrolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号