首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When cultured together with dead 35S-labelled cartilage discs or at the surface of [3H]proteoglycan[14C]collagen-coated plates, synovial cells from either arthritic or normal rabbit joints digested both the proteoglycan and the collagen of the substrates after a lag-period of 1–2 days. These digestions were inversely related to the age (number of subculture passages) of the synovial cells and they could be modulated by serum components that were either inhibitory or stimulatory. They were dependent on a protein synthesis by the cells and were paralleled, in young cultures, by the release of collagenase and of a proteoglycan-degrading neutral proteinase. The co-culture of synovial cells with macrophages or their culture with macrophage-conditioned culture media caused a more rapid and more extensive degradation of collagen and proteoglycan due to the stimulation of the synovial cells by a nondialysable macrophage factor. The production of this synovial cell-activating ‘matrix regulatory monokine’ by the macrophage was enhanced by several immunological or inflammatory stimuli such as lymphocyte factors, phagocytosis, asbestos fibres, endotoxin, adjuvant muramyl dipeptide or chemotactic formyl-methionyl peptide, as well as by other membrane-active agents (phorbol myristate acetate, concanavalin A). It is presumed that these interactions are of importance in the development of cartilage destruction in rheumatoid and other chronic inflammatory arthritis.  相似文献   

2.
Rabbit bone-marrow macrophages and fibroblasts were cultured, independently or together, with pieces of 35S-labelled cartilage or at the surface of dried [14C]collagen gels. Each type of cell, cultivated alone, rapidly degraded the proteoglycan of cartilage, but only the fibroblasts degraded collagen. The co-culture of both types of cell had no consistent effect on the rate of proteoglycan degradation, but it stimulated the rate of collagen degradation. In parallel, the accumulation of collagenase in the culture fluid was enhanced but not that of neutral proteinase. Coinditioned media from macrophage cultures added to cultures of fibroblasts had the same effect as the living macrophages in stimulating the production of collagenase. Their action was itself enhanced when the macrophages had been activated by concanavalin A-stimulated spleen-cell factors. These data suggest that fibroblasts may act as effector cells in producing collagenase and degrading collagen in response to soluble factors released by macrophages under the control of lymphocyte factors.  相似文献   

3.
When cultured together with dead 35S-labelled cartilage discs or at the surface of [3H]proteoglycan/[14C]collagen-coated plates, synovial cells from either arthritic or normal rabbit joints digested both the proteoglycan and the collagen of the substrates after a lag-period of 1-2 days. These digestions were inversely related to the age (number of subculture passages) of the synovial cells and they could be modulated by serum components that were either inhibitory or stimulatory. They were dependent on a protein synthesis by the cells and were paralleled, in young cultures, by the release of collagenase and of a proteoglycan-degrading neutral proteinase. The co-culture of synovial cells with macrophages or their culture with macrophage-conditioned culture media caused a more rapid and more extensive degradation of collagen and proteoglycan due to the stimulation of the synovial cells by a nondialysable macrophage factor. The production of this synovial cell-activating 'matrix regulatory monokine' by the macrophage was enhanced by several immunological or inflammatory stimuli such as lymphocyte factors, phagocytosis, asbestos fibres, endotoxin, adjuvant muramyl dipeptide or chemotactic formyl-methionyl peptide, as well as by other membrane-active agents (phorbol myristate acetate, concanavalin A). It is presumed that these interactions are of importance in the development of cartilage destruction in rheumatoid and other chronic inflammatory arthritis.  相似文献   

4.
Synthesis of collagen and proteoglycan by rabbit articular chondrocytes and synovial fibroblasts has been studied over a 12-week period in primary monolayer culture. Chondrocytes, but not fibroblasts, accumulate large quantities of proteoglycan over the culture period studied. Radiolabeling studies with [35S]sulfate have shown that the major proteoglycan synthesized by cultured chondrocytes is similar to the proteoglycan of cartilage matrix. Chondrocytes also synthesize a smaller dermatan sulfate proteoglycan, which is apparently the only proteoglycan species produced by synovial fibroblasts. Collagen synthesis was studied by radiolabeling with [3H]proline. Cultured chondrocytes produce mainly Type II collagen, with lesser amounts of Type I, whereas synovial fibroblasts produce Type I collagen and some low molecular weight collagenous species. Therefore, long-term monolayer culture permits the production of extensive chondroid matrix by chondrocytes, but not fibroblasts.  相似文献   

5.
6.
Hamster fibroblast protein and rabbit hemoglobin were labelled by incubation of fibroblasts (BHK21) or reticulocytes with [3H]leucine. Alternatively, human or rabbit hemoglobin was labelled by carbamoylation of erythrocytes with K14CNO. The labelled hemoglobins were introduced into fibroblasts by virus-mediated fusion between the blood cells and fibroblasts. The hemoglobins became uniformly distributed throughout the cytoplasm. Degradation was assessed from release of acid-soluble radioactivity into the medium. Radioactivity from [14C]-carbamoylhemoglobin was released as carbamoylvaline and homocitrulline, and these compounds were not metabolized or reincorporated by the cells. Intermediate degradation products could not be detected. The degradation of hemoglobin followed first-order kinetics. The half-life of both carbamoylated and native rabbit hemoglobin in hamster fibroblasts was 28 h, and the half-life of carbamoylated human hemoglobin was about 150 h in fibroblasts from hamster (BHK21), mouse (Balb/3T3), and man (MRC 5), corresponding to that of the more stable endogenous proteins. Phenylhydrazine increased the intracellular degradation of carbamoylated human hemoglobin about 13 times, whereas the degradation of endogenous proteins was little affected. Hemoglobin was degraded in homogenates at 31% h?1 at pH 5 and 0.3% h?1 at pH 7.4. Phenylhydrazine increased these rates to 45% h?1 and 9.7% h?1, respectively. Growing hamster fibroblasts, which are brought into quiescence by serum deprivation or by high culture density, increase the degradation of endogenous protein and of hemoglobin in parallel.  相似文献   

7.
《Bone and mineral》1994,24(2):151-164
It has been shown that both calcitonin gene-related peptide (CGRP) and amylin bind weakly to calcitonin (CT) receptors in osteoclast-like cells formed in vitro and inhibit bone resorption by a cAMP-dependent mechanism. Osteoclasts are thought to be derived from cells of the monocyte macrophage lineage, in which CGRP, but not CT, induces cAMP production. In this study, we determined the presence of functional receptors for CGRP in mouse alveolar macrophages and the effects of this peptide on proliferation and osteoclastic differentiation in mouse alveolar and bone marrow-derived macrophages. Human CT did not stimulate cAMP production in macrophages. Human CGRP stimulated cAMP production in mouse alveolar macrophages and bone marrow-derived macrophages dose-dependently. Human amylin, which has 43% homology with human CGRP, also stimulated these macrophages to produce cAMP, but only at a 100-fold higher concentration. The increment in cAMP production induced by human CGRP and amylin was abolished by the addition of human CGRP(8–37), a selective antagonist for CGRP receptors. Specific binding of [125I]human CGRP to alveolar macrophages was detected (dissociation constant, 2.5 × 10−8 M; binding sites, 1.4 × 104/cell). Amylin, but not CT, displaced the bound [125I]human CGRP from alveolar macrophages, but at a 100-fold higher concentration. No specific binding of [125I]human CT and [125I]human amylin to alveolar macrophages could be detected. Pretreatment with human CGRP for 24 h dose-dependently suppressed DNA synthesis in alveolar macrophages induced by granulocyte-macrophage colony-stimulating factor (GM-CSF). CGRP also suppressed the number of macrophage colonies formed from bone marrow cells induced by macrophage colony-stimulating factor (M-CSF). Pre-treatment of alveolar macrophages with CGRP inhibited differentiation into osteoclast-like cells in co-cultures with primary osteoblastic cells in the presence of 1α,25-dihydroxy vitamin D3. These results indicate that specific receptors for CGRP are present in macrophages and that CGRP modulates proliferation and differentiation of macrophages into osteoclast-like cells by a receptor-mediated mechanism involving cAMP.  相似文献   

8.
Rabbit pulmonary alveolar macrophages produce a collagenase which lyses labeled collagen gels, specifically cleaves collagen types I, II and III, is inhibited by ethylenediaminetetraacetate, cysteine, dithiothreitol and serum but is not inhibited by a serine protease inhibitor. Alveolar macrophage collagenase activity can be enhanced by in vivo BCG activation, in vitro latex, silica or mycobacterium activation and by in vitro uncovering of latent enzymatic activity with trypsin treatment. The production of collagenase by unactivated alveolar macrophages and the presence of “latent” collagenase in culture media of alveolar macrophages are examples of significant differences between alveolar and peritoneal macrophages.  相似文献   

9.
The maturation of connective tissue involves the organization of collagen fibres by resident fibroblasts. Fibroblast attachment to collagen has been demonstrated to involve cell surface receptors, integrins of the β1 family. Integrins are associated with cytoplasmic actin of microfilaments either directly or through focal adhesions. The major actin isoform of fibroblast microfilaments is β actin and to a lesser extent α smooth muscle (α SM) actin. Cultured human dermal fibroblasts derived from adult dermis, newborn foreskin or keloid scar were grown on either uncoated or collagen-coated surfaces. The expression and synthesis of both α2β1 integrin and α SM actin were followed by immunohistology and immunoprecipitation. Fibroblasts on uncoated surfaces expressed little α2β1 integrin on their surface, while 20 per cent of them demonstrated α SM actin within microfilaments. Fibroblasts grown on a collagen-coated surface minimally expressed α SM actin in microfilament structures and a majority of the cells were positive for α2β1 integrin on their membranes. Using [35S]-methionine incorporation and immunoprecipitation, it was shown that fibroblasts grown in uncoated dishes synthesized more α SM actin than fibroblasts grown on collagen-coated dishes. In contrast, fibroblasts grown on collagen coated dishes synthesized more α2β1 integrin compared to the same cells grown on uncoated dishes. Fibroblasts maintained on a type I collagen upregulate the expression and synthesis of α2β1 integrin, and downregulate the expression and synthesis of α SM actin. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
Human fibroblasts, rabbit aortic fibroblasts and rabbit aortic myocytes were growth-arrested in serum-free media and stimulated with material spontaneously released from human platelets in vitro. The cells increased their collagen production 2- to 3-fold with increasing platelet factor concentration, whereas the cell mass, measured by total DNA, was unaffected. An increase in [3H]thymidine incorporation into DNA was noted, however. Thus, platelets can release factors stimulating collagen synthesis, without necessarily inducing concomitant cell division.  相似文献   

11.
Intracellular lysis of collagen by macrophages and fibroblasts in liver cirrhosis and during its reverse development has been shown in experiments on mice by electron microscopy and electron histochemistry. Based on the data obtained it is concluded that in the process under consideration, there occur phagocytosis and intracellular resorption of collagen by macrophages and fibroblasts and that intracellular collagen lysis in the cells in question occurs in the presence of active involvement in the process of lysosomal enzymes.  相似文献   

12.
13.
The divalent cation requirements of lymphokine-mediated alterations in macrophage function (activation and inhibition of migration) were examined. Normal rabbit alveolar macrophages exposed to incubation supernatants of antigen-stimulated sensitized lymphocytes (lymphokine) were activated, manifested by increased adherence and enhanced bactericidal activity, as compared with control cells. This lymphokine-mediated activation was dependent upon the presence of extracellular Mg2+ (but not Ca2+). Our data from both current and previous studies suggest that Mg2+ influx is necessary for initiation or support of the macrophage activation process. The divalent cation requirements for lymphokine (MIF)-induced inhibition of macrophage migration differed from that of the activation phenomenon. Specifically, both Ca2+ and Mg2+ were required for expression of MIF activity. Adsorption experiments indicate that these cations are needed for binding of MIF to the macrophage surface.  相似文献   

14.
The effect of silica (min-u-sil) on lung fibroblasts, with and without the mediation of alveolar macrophages, has been studied by measuring DNA, protein, collagen, lysosomal enzymes and secreted glycosaminoglycans. Intact macrophages were found to stimulate collagen production whether they had first been pretreated with silica or not. The dust has a direct effect on fibroblasts, an effect dependent on silica concentration and the stage of fibroblast growth. The possible relationships of the above effects to both fibrosis and emphysema are discussed.  相似文献   

15.
Given that vascular endothelial cells play an important role in the modulation of vascular structure and function, we hypothesized that endocardial endothelial cells (EECs) may have a modulator role in regulating the cardiac interstitial cells. Endocardial endothelial cells were isolated from freshly collected pig hearts and cardiac fibroblasts were isolated from 3- to 4-d-old Wistar rats. Fibroblasts were cultured in the presence or absence of conditioned medium from EECs. Proliferation of cardiac fibroblasts was measured by the incorporation of [3H]-Thymidine and collagen synthesis was assayed by the incorporation of [3H]-proline. To determine the involvement of signaling mediators, in separate experiments, cardiac fibroblasts were incubated with BQ123 (selective ETA receptor antagonist), PD142893 (nonselective ETA/ETB receptor antagonist), Bis-indolylmaleimide (PKC inhibitor), PD 098059 (MEK inhibitor), or neutralizing anti-transforming growth factor (TGF)-β-antibody. Endocardial endothelium-derived factors endothelin (ET)-1, TGF-β, and Angiotensin (Ang)-II in the conditioned medium were assayed by enzyme-linked immunosorbent assay using commercially available kits. We report here evidence that suggest that endocardial endothelial cells stimulate both proliferation and collagen synthesis of cardiac fibroblasts. The response seems to be mediated by endothelin through its ETA receptor. Our results also indicate that protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) pathways are essential for the EEC-induced proliferation of cardiac fibroblasts.  相似文献   

16.
In vitro exposure of rat alveolar macrophages to 0.5 ppm ozone for 60 minutes results in a 76% decrease in agglutination by concanavalin A. A decrease in the agglutinability of rat alveolar macrophages by concanavalin A was also observed following inhalation of 0.5 or 1.0 ppm ozone for two hours. In contradistinction, in vitro exposure of rat alveolar macrophages to 2.4 ppm nitrogen dioxide for 60 minutes produced a 64% increase in agglutination by concanavalin A; and increased agglutinability was also noted following inhalation of 12.1 ppm nitrogen dioxide for two hours. Agglutination was almost completely inhibited by alpha-methyl-mannose. Neither pollutant significantly altered the binding of 3H-concanavalin A to rat alveolar macrophages. These two air pollutants, both of which are known to potentiate respiratory tract infections, appear to affect the response of the alveolar macrophage membrane to concanavalin A in a dissimilar fashion.  相似文献   

17.
 It has been reported that the in vitro development of tumoricidal function in alveolar macrophages from lung cancer patients is reduced significantly when compared to that in peripheral blood monocytes from the same patients or alveolar macrophages from control patients. In the present investigation, a method for potentiating the development of tumoricidal function in alveolar macrophages from lung cancer patients is described. This method, which relies on priming the macrophages with purified, allogeneic peripheral blood lymphocytes from normal donors, could not be demonstrated when autologous lymphocytes from lung cancer patients were used in the priming coculture. The augmentation of tumoricidal function appears to be mediated by one or more soluble factors, since supernatants from cocultures of alveolar macrophages and allogeneic peripheral blood lymphocytes could enhance the cytotoxic function of freshly obtained alveolar macrophages. Furthermore, it appears that NK cells are necessary for this effect, since depletion of CD56+/CD57+ cells from allogeneic lymphocytes eliminated their capacity to enhance alveolar macrophage cytotoxic function. The augmentation of cytotoxic function elicited in alveolar macrophages by this method was not associated with changes in the secretion of tumor necrosis factor α, or interleukin 1β. Received: 15 March 1997 / Accepted: 11 June 1997  相似文献   

18.
An enzymatic activity capable of degrading type V collagen at neutral pH was found in the medium from cultured rabbit pulmonary alveolar macrophages which had been “activated” invivo by injection of complete Freund's Adjuvant. This enzyme was characterized as a metalloproteinase by virtue of its inhibition by EDTA but not by phenylmethylsulfonyl fluoride or N-ethyl maleimide. Ion-exchange chromatography on DEAE-cellulose was successful in separating the type V collagen-degrading activity from the type I collagenase which is also secreted by these cells. These observations suggest that the degradation of type V collagen is independent of the degradation of the interstitial collagens and may require the action of its own “specific collagenase”.  相似文献   

19.
Dysregulated wound healing leads to fibrosis, whereby fibroblasts synthesize excess extracellular matrix and scarring impairs proper organ function. Although fibrotic diseases arise from diverse causes and display heterogeneous features, fibrosis commonly associates with chronic inflammation. Recent discoveries reinforce the idea that communication between fibroblasts, macrophages, and CD4 T cells integrates the processes of wound healing and host defense. Signals between macrophages and fibroblasts can exacerbate, suppress, or reverse fibrosis. Fibroblasts and macrophages are activated by T cells, but their activation also engages negative feedback loops that reduce fibrosis by restraining the immune response, particularly when the Th2 cytokine IL-13 contributes to pathology. Thus the interactions among fibroblasts, macrophages, and CD4 T cells likely play general and critical roles in initiating, perpetuating, and resolving fibrosis in both experimental and clinical conditions.  相似文献   

20.
Summary The in vitro proliferations rates and ptoteoglycans synthesized by adult human gingival fibroblasts derived from six age- and sex-matched donors of healthy and chronically inflamed gingiva were analyzed. Fibroblasts from inflamed gingiva demonstrated a slower growth rate than cells from healthy tissue. The rate of incorporation of [35S]sulfate into cell layer-associated proteoglycans and the release of these macromolecules into the culture medium did not differ appreciably between the two groups of cells. Similarly, no detectable differences in the overall charge of the proteoglycans synthesized by normal and inflamed gingival fibroblasts, as assessed by their elution from DEAE-Sephacel, were noted. However, sepharose CL-4B chromatography revealed that the medium-associated proteoglycans made by the inflamed tissue fibroblasts were depleted in one species of chondroitin sulfate proteoglycans and contained more dermatan sulfate than did control cells. In addition, the intracellular proteoglycan pool was found to be greatly diminished in the inflamed tissue fibroblast cell layers. Glycosaminoglycan analysis of the proteoglycans confirmed these observations. Compared to normal gingival fibroblasts, the inflamed tissue fibroblasts released less heparan sulfate into the medium. Additionally, increased levels of dermatan sulfate and depleted amounts of chondroitin sulfate in the medium of inflamed gingival cells were noted. The observed changes were stable through several transfers in culture and indicate that chronically inflamed tissue may contain fibroblasts mainfesting a heritable phenotype differing from fibroblasts in normal connective tissue. P. Mark Bartold was supported by a C. J. Martin Fellowship for the National Health and Medical Research Council of Australia. This work was also supported by grants DE-03301 and DE-02600 from the National Institutes of Health, Bethesda, MD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号