首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro, Epstein-Barr virus (EBV) will infect any resting B cell, driving it out of the resting state to become an activated proliferating lymphoblast. Paradoxically, EBV persists in vivo in a quiescent state in resting memory B cells that circulate in the peripheral blood. How does the virus get there, and with such specificity for the memory compartment? An explanation comes from the idea that two genes encoded by the virus--LMP1 and LMP2A--allow EBV to exploit the normal pathways of B-cell differentiation so that the EBV-infected B blast can become a resting memory cell.  相似文献   

2.
In this study we used Gardella gel analysis of intact DNA, Southern blotting of digested DNA, and fluorescence in situ hybridization to provide complementary and unequivocal information on the state of the Epstein-Barr virus (EBV) genome in persistently infected cells. The fluorescence in situ hybridization technique allowed us to directly visualize both integrated and episomal EBV DNA at the single-cell level. We show here that circularization of the EBV genome is rarely detected upon infecting activated normal B cells. The virus can persist upon infection of a different proliferating B-cell target, EBV-negative Burkitt's lymphoma tumor cell lines. Analysis of 16 such lines reveal again, that the virus infrequently persists as covalently closed episomes; rather, the virus preferentially persists by integrating into the host DNA (10 of 16 clones). The integrated virus is linear and usually intact, although 3 of 10 isolates have deletions from the left-hand end including the latent origin of replication. At the level of our analysis, no obvious relationship was seen between the integration sites. These studies provide, for the first time, a reproducible in vitro model system to study integration by EBV.  相似文献   

3.
4.
5.
DNA viruses such as herpesviruses are known to encode homologs of cellular antiapoptotic viral Bcl-2 proteins (vBcl-2s), which protect the virus from apoptosis in its host cell during virus synthesis. Epstein-Barr virus (EBV), a human tumor virus and a prominent member of γ-herpesviruses, infects primary resting B lymphocytes to establish a latent infection and yield proliferating, growth-transformed B cells in vitro. In these cells, 11 viral genes that contribute to cellular transformation are consistently expressed. EBV also encodes two vBcl-2 genes whose roles are unclear. Here we show that the genetic inactivation of both vBcl-2 genes disabled EBV's ability to transform primary resting B lymphocytes. Primary B cells infected with a vBcl-2-negative virus did not enter the cell cycle and died of immediate apoptosis. Apoptosis was abrogated in infected cells in which vBcl-2 genes were maximally expressed within the first 24 h postinfection. During latent infection, however, the expression of vBcl-2 genes became undetectable. Thus, both vBcl-2 homologs are essential for initial cellular transformation but become dispensable once a latent infection is established. Because long-lived, latently infected memory B cells and EBV-associated B-cell lymphomas are derived from EBV-infected proapoptotic germinal center B cells, we conclude that vBcl-2 genes are essential for the initial evasion of apoptosis in cells in vivo in which the virus establishes a latent infection or causes cellular transformation or both.  相似文献   

6.
Epstein-Barr virus (EBV), which is associated with multiple human tumors, persists as a minichromosome in the nucleus of B lymphocytes and induces malignancies through incompletely understood mechanisms. Here, we present a large-scale functional genomic analysis of EBV. Our experimentally generated nucleosome positioning maps and viral protein binding data were integrated with over 700 publicly available high-throughput sequencing data sets for human lymphoblastoid cell lines mapped to the EBV genome. We found that viral lytic genes are coexpressed with cellular cancer-associated pathways, suggesting that the lytic cycle may play an unexpected role in virus-mediated oncogenesis. Host regulators of viral oncogene expression and chromosome structure were identified and validated, revealing a role for the B cell-specific protein Pax5 in viral gene regulation and the cohesin complex in regulating higher order chromatin structure. Our findings provide a deeper understanding of latent viral persistence in oncogenesis and establish a valuable viral genomics resource for future exploration.  相似文献   

7.
Epstein-Barr virus (EBV) is a strict human pathogen for which no small animal models exist. Plasmids that contain the EBV plasmid origin of replication, oriP, and express EBV nuclear antigen 1 (EBNA1) are stably maintained extrachromosomally in human cells, whereas these plasmids replicate poorly in rodent cells. However, the ability of oriP and EBNA1 to maintain the entire EBV episome in proliferating rodent cells has not been determined. Expression of the two human B-cell receptors for EBV on the surfaces of murine B cells allows efficient viral entry that leads to the establishment of latent EBV infection and long-term persistence of the viral genome. Latent gene expression in these cells resembles the latency II profile in that EBNA1 and LMP1 can be detected whereas EBNA2 and the EBNA3s are not expressed.  相似文献   

8.
A simple gel technique is described for the detection of large, covalently closed, circular DNA molecules in eucaryotic cells. The procedure is based on the electrophoretic technique of Eckhardt (T. Eckhardt, Plasmid 1:584-588, 1978) for detecting bacterial plasmids and has been modified for the detection of circular and linear extrachromosomal herpesvirus genomes in mammalian cells. Gentle lysis of suspended cells in the well of an agarose gel followed by high-voltage electrophoresis allows separation of extrachromosomal DNA from the bulk of cellular DNA. Circular viral DNA from cells which carry the genomes of Epstein-Barr virus, Herpesvirus saimiri, and Herpesvirus ateles can be detected in these gels as sharp bands which comigrate with bacterial plasmid DNA of 208 kilobases. Epstein-Barr virus producer cell lines also show a sharp band of linear 160-kilobase DNA. The kinetics of the appearance of this linear band after induction of viral replication after temperature shift parallels the known kinetics of Epstein-Barr virus production in these cell lines. Hybridization of DNA after transfer to filters shows that the circular and linear DNA bands are virus specific and that as little as 0.25 Epstein-Barr virus genome per cell can be detected. The technique is simple, rapid, and sensitive and requires relatively low amounts of cells (0.5 X 10(6) to 2.5 X 10(6)).  相似文献   

9.
10.
Epstein-Barr virus, a B-lymphotropic human herpesvirus, persists in vivo by entering the long-lived memory B-cell compartment. Work with genetically modified mice suggests that the viral latent membrane protein LMP1 might allow infected B cells to access the memory compartment by an unusual route.  相似文献   

11.
Most adult humans are infected benignly and for life with the herpesvirus Epstein-Barr virus. EBV has been a focus of research because of its status as a candidate tumor virus for a number of lymphomas and carcinomas. In vitro EBV has the ability to establish a latent infection in proliferating B lymphoblasts. This is the only system available for studying human herpesvirus latency in culture and has been extremely useful for elucidating how EBV promotes cellular growth. However, to understand how EBV survives in the healthy host and what goes awry, leading to disease, it is essential to know how EBV establishes and maintains a persistent infection in vivo. Early studies on the mechanism of EBV persistence produced inconclusive and often contradictory results because the techniques available were crude and insensitive. Recent advances in PCR technology and the application of sophisticated cell fractionation techniques have now provided new insights into the behavior of the virus. Most dramatically it has been shown that EBV in vivo does not establish latency in a proliferating lymphoblast, but in a resting memory B cell. The contrasting behaviors of being able to establish a latent infection in proliferating B blasts and resting memory B cells can be resolved in terms of a model where EBV performs its complete life cycle in B lymphocytes. The virus achieves this not by disrupting normal B cell biology but by using it.  相似文献   

12.
A complete collection of fragments of Epstein-Barr virus DNA, obtained by cleavage with restriction endonuclease Eco RI, has been cloned. Fourteen different internal fragments of the virus genome, derived from linear virion DNA of the B95-8 strain, and sequences corresponding to the terminal regions of virion DNA, derived from intracellular circular EBV DNA isolated from 895-8 cells, were cloned. Sizes of fragments were determined by agarose gel electrophoresis and their sum leads to an estimated molecular weight of 110 x 10(6) for virion DNA. Large Eco RI DNA fragments of special interest were also cloned in cosmids using another source of EBV DNA, that is, to circular viral DNA derived from Raji cells. In order to provide a set of overlapping sequences, all the 29 internal Bam HI fragments of B95-8 virion DNA were cloned in pBR322. The map location within the viral genome of each cloned DNA fragment was identified by hybridizing to blots of virion DNA cleaved with several different restriction endonucleases.  相似文献   

13.
Epstein-Barr virus transformed human lymphocytes despite the presence of up to 500 microM acyclovir [9-(2-hydroxyethoxymethyl)guanine], a viral DNA polymerase inhibitor. The transformed cells contained multiple Epstein-Barr virus genome copy numbers. Functional viral DNA polymerase is probably not required for cell transformation and the initial amplification of the viral genome.  相似文献   

14.
《Seminars in Virology》1994,5(6):405-414
Infection of resting human B lymphocytes with Epstein-Barr virus triggers a complex series of signal transduction, protein modification and gene expression events that drive resting cells into continuously cycling cells. About 10 viral genes establish and/or sustain the growth transformed phenotype, viral latency and propagation. The most recently recognized latency gene is viral interleukin 10, a functional, near perfect copy of the human gene. Here we review the function of latency genes with a focus on the role of first viral and then cellular IL-10 in transformation and subsequent maintenance of cell growth.  相似文献   

15.
The Epstein-Barr virus (EBV) BZLF1 gene encodes the immediate-early (IE) protein Zta, which plays a central role in regulating the switch between viral latency and lytic replication. A silencing element, ZIIR, is located between the ZID and ZII positive regulatory elements in the BZLF1 promoter Zp. We report here the phenotypes of variants of EBV strain B95.8 containing base substitution mutations in this ZIIR element. HEK293 cells infected with ZIIR mutant (ZIIRmt) virus produced at least 20-fold more viral IE Zta and Rta and early (E) EAD protein than did cells infected with the parental wild-type (WT) virus, leading to viral DNA replication and production of infectious virus. However, ZIIR mutant virus was 1/10 as efficient as WT virus in establishing proliferating B-cell clones following infection of human primary blood B cells. The ZIIRmt-infected lymphoblastoid cell lines (LCLs) that did grow out exhibited a phenotype similar to the one observed in 293 cells, including marked overproduction of IE and E gene products relative to WT-infected LCLs and lytic replication of the viral genome. Incubation of the ZIIRmt-infected LCLs with the chemical inducer 12-O-tetradecanoyl-phorbol-13-acetate (TPA) led to much greater activation of Zp than did the same treatment of WT- or ZVmt-infected LCLs. Furthermore, a protein kinase C (PKC) inhibitor, bis-indolylmaleimide, eliminated this activation by TPA. Thus, we conclude that ZIIR is a potent silencing element of Zp; it plays a key role in establishment and maintenance of EBV latency by inhibiting activation of Zp through the PKC signal transduction pathway.  相似文献   

16.
A non-integrated form of Epstein-Barr virus DNA was purified from the Burkitt lymphoma-derived human lymphoid cell line Raji by CsCl density gradient centrifugation and neutral glycerol gradient centrifugation. This intracellular form of the virus DNA sediments at a rate typical of a covalently closed circular DNA molecule of the size of the virus genome in both neutral and alkaline solution. Treatment with low doses of X-rays leads to a discontinuous conversion of the molecules to a form with the sedimentation properties of open circular DNA (a circular duplex molecule containing one or more single-strand breaks). The direct observation of large circular DNA molecules by electron microscopy further confirms the covalently closed circular duplex structure of part of the intracellular viral DNA. Such circular molecules were not detected in corresponding DNA fractions from Epstein-Barr virus-negative human lymphoid cell lines. In ethidium bromide/CsCl density gradient centrifugation experiments, the purified non-integrated virus DNA behaves as twisted, covalently closed DNA circles with the same initial superhelix density as polyoma virus DNA. The latter additional purification technique permits the isolation of intracellular Epstein-Barr virus DNA in > 90% pure form from non-producer cells. The molecular weight of the circular virus DNA from Raji cells, determined by contour length measurements, is the same within experimental error as that of the linear DNA from virus particles.  相似文献   

17.
Murine gammaherpesvirus 68 (gammaHV68) provides a tractable small animal model with which to study the mechanisms involved in the establishment and maintenance of latency by gammaherpesviruses. Similar to the human gammaherpesvirus Epstein-Barr virus (EBV), gammaHV68 establishes and maintains latency in the memory B-cell compartment following intranasal infection. Here we have sought to determine whether, like EBV infection, gammaHV68 infection in vivo is associated with B-cell proliferation during the establishment of chronic infection. We show that gammaHV68 infection leads to significant splenic B-cell proliferation as late as day 42 postinfection. Notably, gammaHV68 latency was found predominantly in the proliferating B-cell population in the spleen on both days 16 and 42 postinfection. Furthermore, virus reactivation upon ex vivo culture was heavily biased toward the proliferating B-cell population. DNA methyltransferase 1 (Dnmt1) is a critical maintenance methyltransferase which, during DNA replication, maintains the DNA methylation patterns of the cellular genome, a process that is essential for the survival of proliferating cells. To assess whether the establishment of gammaHV68 latency requires B-cell proliferation, we characterized infections of conditional Dnmt1 knockout mice by utilizing a recombinant gammaHV68 that expresses Cre-recombinase (gammaHV68-Cre). In C57BL/6 mice, the gammaHV68-Cre virus exhibited normal acute virus replication in the lungs as well as normal establishment and reactivation from latency. Furthermore, the gammaHV68-Cre virus also replicated normally during the acute phase of infection in the lungs of Dnmt1 conditional mice. However, deletion of the Dnmt1 alleles from gammaHV68-infected cells in vivo led to a severe ablation of viral latency, as assessed on both days 16 and 42 postinfection. Thus, the studies provide direct evidence that the proliferation of latently infected B cells is critical for the establishment of chronic gammaHV68 infection.  相似文献   

18.
19.
The LCR of EBV makes Burkitt's lymphoma endemic   总被引:2,自引:0,他引:2  
  相似文献   

20.
RNA was extracted from the Burkitt lymphoma-derived cell line Raji and from Burkitt lymphoma tumor biopsies, isotope labeled in vitro by iodination with 125I, and hybridized to electrophoretically separated restriction endonuclease fragments of Epstein-Barr virus DNA on nitrocellulose membranes. The results indicated that only certain parts of the Epstein-Barr virus genome are represented as polyribosomal RNA in Raji cells, with a pronounced dominance of RNA sequences complementary to a 2.0 x 10(6)-dalton segment of Epstein-Barr virus DNA located close to the left end of the viral genome. A map of virus-specific polyribosomal RNA sequences was constructed, which indicated that a minimum of three regions of the Epstein-Barr virus genome are expressed in Raji cells. Total-cell RNA preparations from five Burkitt lymphoma biopsies contained RNA sequences homologous to the same regions of Epstein-Barr virus DNA as polyribosomal RNA from Raji cells, albeit at different relative proportions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号