首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The majority of managed forests in Fennoscandia are younger than 70 years old but yet little is known about their potential to host rare and threatened species. In this study, we examined red-listed bryophytes and lichens in 19 young stands originating from clear-cutting (30-70 years old) in the boreal region, finding 19 red-listed species (six bryophytes and 13 lichens). We used adjoining old stands, which most likely never had been clear-cut, as reference. The old stands contained significantly more species, but when taking the amount of biological legacies (i.e., remaining deciduous trees and dead wood) from the previous forest generation into account, bryophyte species number did not differ between old and young stands, and lichen number was even higher in young stands. No dispersal effect could be detected from the old to the young stands. The amount of wetlands in the surroundings was important for bryophytes, as was the area of old forest for both lichens and bryophytes. A cardinal position of young stands to the north of old stands was beneficial to red-listed bryophytes as well as lichens. We conclude that young forest plantations may function as habitat for red-listed species, but that this depends on presence of structures from the previous forest generation, and also on qualities in the surrounding landscape. Nevertheless, at repeated clear-cuttings, a successive decrease in species populations in young production stands is likely, due to increased fragmentation and reduced substrate amounts. Retention of dead wood and deciduous trees might be efficient conservation measures. Although priority needs to be given to preservation of remnant old-growth forests, we argue that young forests rich in biological legacies and located in landscapes with high amounts of old forests may have a conservation value.  相似文献   

2.
This paper compares the forest structure, regeneration and distribution of dead wood in a virgin forest remnant and a close-to-nature managed beech–conifer mixture situated on Grme? Mountain in Western Bosnia. The investigations were carried out in a 1 ha permanent sample plot and 35 circular plots (20 m radius) in the virgin forest and in 17 circular plots (25 m radius) in managed forests. The number of trees in the managed forest was significantly (p = 0.05) higher than that in virgin forest and the distribution of the number of trees per diameter classes had a decreasing trend, but with a different shape in the virgin forest compared to the managed stands. In the lower diameter classes, the stock volume recorded in virgin forest was half of that in the managed forest, whilst for higher diameter classes the cumulated volume of the growing stock was almost double in virgin forest. The young crops had a significantly lower presence in the virgin forest and a larger volume of dead wood was identified in the virgin forest than in managed stands. The study results are important in assessing the consequences of close-to-nature management on the forest structure and regeneration when compared to the condition in virgin forests.  相似文献   

3.
Intensive forest management has led to a population decline in many species, including those dependent on dead wood. Many lichens are known to depend on dead wood, but their habitat requirements have been little studied. In this study we investigated the habitat requirements of wood dependent lichens on coarse dead wood (diameter >10 cm) of Scots pine Pinus sylvestris in managed boreal forests in central Sweden. Twenty-one wood dependent lichen species were recorded, of which eleven were confined to old (estimated to be >120 years old) and hard dead wood. Almost all of this wood has emanated from kelo trees, i.e. decorticated and resin-impregnated standing pine trees that died long time ago. We found four red-listed species, of which two were exclusive and two highly associated with old and hard wood. Lichen species composition differed significantly among dead wood types (low stumps, snags, logs), wood hardness, wood age and occurrence of fire scars. Snags had higher number of species per dead wood area than logs and low stumps, and old snags had higher number of species per dead wood area than young ones. Since wood from kelo trees harbours a specialized lichen flora, conservation of wood dependent lichens requires management strategies ensuring the future presence of this wood type. Besides preserving available kelo wood, the formation of this substratum should be supported by setting aside P. sylvestris forests and subject these to prescribed burnings as well as to allow wild fires in some of these forests.  相似文献   

4.
One of the main challenges in biodiversity conservation is to curb a further degradation and loss of high-quality habitats. In agricultural matrix landscapes, the detection of alternative habitats for habitat specialists may be a solution. Historic old parks or landscape gardens around manor houses and castles are cultural heritage of nobles, but their value in harbouring biodiversity is poorly acknowledged. Therefore we evaluated the potential of old rural parks to serve as a habitat for nemoral forest species. We recorded stand structure and the presence of forest biodiversity indicators in 74 closed-canopy stands of historic parks and compared them with 93 neighbouring mature forest remnants on ancient forest land. We estimated the importance of stand structure in relation to habitat type on biodiversity indicators. Finally we suggest single-value indicator-complexes for the cost-efficient assessment of the conservation value of forests and forest-like habitats. Park stands outclassed reference forests in several individual structural characteristics, and in combined indicators of habitat quality and biodiversity. Forests had higher estimates for the combined indicator of dead wood, but large-diameter dead wood types were more abundant in parks. Woodpeckers, several old-growth indicator epiphytes and forest herbs had successfully become established in planted forest-like park fragments. Old rural parks resemble high-conservation-value forests more than the best preserved contemporary forest remnants. After the century needed to overcome immigration delay, old parks do provide a refugium for temperate deciduous forest species. Consequently, biodiversity-targeted management should retain and enhance old-growth attributes in forests and on the peripheries of parks: e.g. preserving old trees to provide service for epiphytes, hollow trees and an understorey mosaic for birds and bats; dead wood elements for saproxylic insects and fungi; limited mowing frequency and increased cutting height for forest herbs. Forestry should enhance the recovery of mixed deciduous stands and avoid conifer plantations.  相似文献   

5.
热带次生林利用与土壤物理性质变化   总被引:8,自引:1,他引:7  
许炼烽  朱伍坤 《生态学报》1996,16(6):652-659
利用海南岛吊罗山林区内的生态定位观测站近3a的定位观测数据,和定期采样进行的土壤物理性质测定,分析了不同的次生林砍伐程度和利用方式(包括次生林对照、择伐50%、择伐70%、皆伐迹地、垦植橡胶和刀耕火种垦植甘蔗、蕃茨等样方)对土壤温度、土壤含水量、土壤团聚结构、土壤机械组成、土壤容重、孔隙度和土壤持水特性等土壤主要物理性质的影响,结果显示,热带次生林的过度砍伐和不合理的刀耕火种,严重地影响了土壤重要  相似文献   

6.
  • 1 Logging residues form a substantial portion of the dead wood in managed forests, and logging residues can facilitate bark beetle multiplication and outbreaks. For these reasons, it is highly advisable to find a way of reducing the risk of bark beetle outbreaks without extensive removal of logging residues, which is inconsistent with nature conservation.
  • 2 The coverage of Pityogenes chalcographus (L.) galleries and the presence of other bark beetle species on 3520 fragments of logging residues of the Scots pine (Pinus sylvestris L.) that originated over different months from 2004 to 2008 were examined in 135 stands in four study areas of the Czech Republic.
  • 3 Pityogenes chalcographus was the most abundant species.
  • 4 The month of felling had a significant effect on the coverage of P. chalcographus galleries on logging residues.
  • 5 Concentrating felling in August and September (and possibly October) can minimize the risk of P. chalcographus multiplication and outbreaks.
  相似文献   

7.
Large amounts (36.4 Mg ha−1 or 179 m3 ha−1) of buried dead wood were found in overmature (146–204-year-old) black spruce (Picea mariana (Mill.) B.S.P.) forests in the high boreal region of eastern Canada. Amounts of this size indicate that burial reduces rates of wood decay producing an important component of long-term carbon (C) storage. Radiocarbon-derived ages of black spruce stems buried near the bottom of the organic soil horizon at three old-growth sites were up to 515 years old. Together with information on current stand age, this suggests that the stems have been dead for more than 250 years. Most aboveground dead wood decays or becomes fragmented within about 70 years of tree death in these forests. The presence of old yet well-preserved buried wood suggests that decay rates are greatly reduced when downed dead wood is quickly overgrown by moss. Thus, the nature and type of ground-layer vegetation influences the accumulation of organic matter in these forests. This process of dead wood burial and the resultant addition to a large and long-enduring belowground C pool should be considered when estimating dead wood abundance for habitat or forest C accounting and cycling.  相似文献   

8.
Abstract.  1. Population and individual colony characteristics of Nasutitermes acajutlae on St John, U.S. Virgin Islands were studied over a 5-year period.
2. Four habitat types (dry forests, moist forests, sparse vegetation, and woodlands) were sampled for N. acajutlae , using quadrat-based methods. Lying dead wood was also quantified in the same sites.
3. Habitats differed significantly in the volume of lying dead wood, and total termite nest volume within quadrats was positively related to wood volume. It was hypothesised that the volume of dead wood affected growth, reproduction, and yearly survival of individual colonies.
4. In a sample of > 100 colonies assessed in 1998, 2000, 2001, and 2002, no significant differences in the growth rate of colonies (= increase in nest volume) could be found between habitat types; however, colonies in sparse vegetation were smaller, less likely to survive, and reproduced at a smaller size compared with those in the other three habitats.
5. Overall nest volume in sparse vegetation was high, compared with dry and moist forest, but colonies showed, on average, poorer survival (interpreted as lower fitness), and produced alates at an early stage of development. Optimum habitat characteristics for N. acajutlae may include not only favourable microclimate but also the reliable acquisition of new dead wood after storms.  相似文献   

9.
Questions: Can small and isolated high‐conservation value forests (e.g. designated woodland key habitats) maintain old‐growth forest characteristics and functionality in fragmented landscapes? To what extent have past disturbances (natural and anthropogenic) influenced the development of old‐growth characteristics of these forests? How long does it take for selectively cut stands to attain conditions resembling old‐growth forests? Location: Southern boreal zone of central Sweden. Methods: We linked multiple lines of evidence from historical records, biological archives, and analyses of current forest structure to reconstruct the forest history of a boreal landscape, with special emphasis on six remaining core localities of high‐conservation value forest stands. Results: Our reconstructions revealed that several of these stands experienced wildfires up to the 1890s; all had been selectively harvested in the late 1800s; and all underwent substantial structural and compositional reorganization over the following 100‐150 years. This time interval was sufficient to recover considerable amounts of standing and downed dead wood (mean 60.3 m3 ha?1), a range of tree ages and sizes (mean basal area 32.6 m2 ha?1), and dominance of shade‐tolerant spruce. It was insufficient to obtain clearly uneven tree age structures and large (>45 cm diameter) living and dead trees. Thus, these forests contain some, but not all, important compositional and structural attributes of old‐growth forests, their abundance being dependent on the timing and magnitude of past natural and anthropogenic disturbances. Our landscape‐level analysis showed marked compositional and structural differences between the historical forest landscape and the present landscape, with the latter having a greater proportion of young forests, introduction of non‐native species, and lack of large trees and dead wood. Conclusions: The remnant high‐conservation value stands were not true representatives of the pre‐industrial forests, but represent the last vestige of forests that have regenerated naturally and maintained a continuous tree cover. These traits, coupled with their capacity for old‐growth recovery, make them valuable focal areas for conservation.  相似文献   

10.
西江坪常绿阔叶林地表径流的研究   总被引:5,自引:0,他引:5  
黄承标   《广西植物》1991,11(3):247-253
本文采用固定小区径流法,对常绿阔叶林及其皆伐迹地草坡地表径流进行了对比研究,结果表明:常绿阔叶林年径流量为9.79毫米,占大气降水量0.5%;较迹地草坡减少径流56.3%。径流的季节变化以夏、春、秋、冬依次递减;其中4—8月为径流高峰期,径流量占全年62.4—96.5%。常绿阔叶林对暴雨以下雨量级的削减作用显著;而对持续性大暴雨以上雨量级的削减作用不明显。  相似文献   

11.
Compared to agricultural land and spruce plantations, central European beech-oak forests are often relatively close to natural conditions. However, forest management may alter these conditions. In Steigerwald, southern Germany, a large beech-dominated forest area, three management intensities were applied during the past 30–70 years. Here, we examined the influence of management intensity on saproxylic beetles in >100-year old mature stands at 69 sampling plots in 2004. We sampled beetles using flight-window traps and time standard direct searches. The community structure based on presence/absence data changed remarkably along the gradient from unmanaged to low-intensity to high-intensity management, but these differences were not evident using abundance data from flight interception traps. Saproxylic species richness decreased in intensively managed forests. Elateridae and threatened species richness peaked in unmanaged forests and in forests under low-intensity management. Saproxylic species richness was dependent on certain micro-habitat factors. These factors were (1) the amount of dead wood for Elateridae, overall and threatened saproxylic beetle richness; (2) the amount of flowering plants for Cerambycidae; (3) the richness of wood-inhabiting fungi for Staphylinidae, Melandryidae and overall saproxylic beetle richness; and (4) the frequency of Fomes fomentarius for threatened species. Species richness was better explained by plot factors, such as dead wood or fungi, than by management intensity. These results suggest that the natural variation of dead wood niches (decay stages, snag sizes, tree cavities and wood-inhabiting fungi species) must be maintained to efficiently conserve the whole saproxylic beetle fauna of beech forests. Also, intensive management may alter the specialised saproxylic beetle community even if the initial tree-species composition is maintained, which was the case in our study. For monitoring the ecological sustainability of forest management we must focus on threatened species. If structures alone are sampled then the amount of dead wood is the best indicator for a rich saproxylic beetle fauna.  相似文献   

12.
Naturally dynamic forests have a high proportion of biotopes with old large trees, diverse vertical and horizontal structure at multiple scales, and much dead wood. As such, they provide habitat to species and ecosystem processes that forests managed for wood production cannot provide to the same degree. Whether termed old-growth, ancient, virgin, intact, primeval or continuity forests, a major challenge and need is to map such potential high conservation value forest for subsequent inclusion in functional habitat networks for biodiversity conservation in forest landscapes. Given that the delivery time of natural forest properties is much longer than of industry wood, we explore the usefulness of using historical maps to identify forests that have been continuously present for 220 years (potential old-growth) versus 140 years (potential aging forest) in a case study in the Romanian Carpathian Mountains (see Online Resource 1). While the total forest cover increased by 35 % over the past two centuries, the area of potential aging and potential old-growth forest declined by 56 and 34 %, respectively. Spatial modelling of edge effects and patch size for virtual species with different requirements indicated an even greater decrease in the area of functional habitat networks of old-growth and ageing forest. Our analyses show that compared to simple mapping of potential high conservation forests, the area of functional habitat patches is severely overestimated, and caution is needed when estimating the area of potential high conservation value forests that form functional habitat networks, i.e. a green infrastructure. In addition, the landscape and regional scale connectivity of patches needs to be considered. We argue that the use of historical maps combined with assessment of spatial patterns is an effective tool for identifying and analyzing potential high conservation value forests in a landscape context.  相似文献   

13.
Beech forests in Central Europe are under strong anthropogenic pressure. Yet they play a fundamental role for biodiversity and are therefore increasingly considered in conservation activities. Sites of high conservation value can be efficiently defined by the use of indicator species, but very few studies have identified indicator species for beech forests on a continental scale. Here we determined the efficacy of saproxylic beetles as indicator species for European beech forests and studied the effect of the amount of dead wood and temperature on their presence. We analyzed data from 988 trap catches from 209 sites in 7 European countries. Using the flexible indicator approach, which allowed combinations of two temperature groups (warm and cool) and three dead-wood amount categories (small, intermediate, high) to be considered, we identified 127 indicator species. Generally, we found more indicator species of beetles at warmer sites and at sites with larger amounts of dead wood. Indicator species at cooler sites were found only in combination with larger amounts of dead wood. We present a comprehensive, data-based list of indicator species of saproxylic beetle for near-natural beech forests, as required in the framework of the European Natura-2000 concept for habitat evaluation. We identified the conspicuous Lucanidae as the family with the highest percentage of indicator species and thus recommend it as a priority indicator group for monitoring. Our results furthermore provide evidence that large amounts of dead wood are particularly important in cool, montane beech forests for maintaining high diversity.  相似文献   

14.
Global warming and land‐use change are expected to be additive threats to global diversity, to which insects contribute the highest proportion. Insects are strongly influenced by temperature but also require specific habitat resources, and thus interaction between the two factors is likely. We selected saproxylic beetles as a model group because their life cycle depends on dead wood, which is highly threatened by land use. We tested the extent to which higher temperatures compensate for the negative effects of low amounts of dead wood on saproxylic beetle species richness (Temperature–Dead wood compensation hypothesis) on both a macroclimate and a topoclimate scale (north‐ and south‐facing slopes). We analyzed 1404 flight‐interception trap catches across Europe to test for interaction effects of temperature and dead‐wood amount on species richness. To experimentally test our findings from the activity trap data, we additionally reared beetles from 80 bundles of dead wood initially exposed at high and low elevations. At the topoclimate scale, we analyzed trap catches and reared beetles from dead wood exposed in 20 forest stands on south‐facing and north‐facing slopes in one region. On the macroscale, both temperature and dead‐wood amount positively affected total and threatened species richness independently, but their interaction was significantly negative, indicating compensation. On both scales and irrespective of the method, species richness decreased with temperature decline. Our observation that increasing temperature compensates for lower amounts of dead wood has two important implications. First, managers of production forests should adapt their dead‐wood enrichment strategy to site‐specific temperature conditions. Second, an increase in temperature will compensate at least partially for poor habitat conditions in production forests. Such a perspective contrasts the general assumption of reinforcing impacts of global warming and habitat loss on biodiversity, but it is corroborated by recent range expansions of threatened beetle species.  相似文献   

15.
Bryophyte and fungal communities were investigated on fallen trees representing seven deciduous tree species in a mixed near natural nemoral forest. Bryophytes were represented by 41 taxa, including several very frequent species. Of the 296 fungal species, most were recorded with very low frequency and the share of high frequent species was much lower than among the bryophytes. Species turnover was bigger in the fungal communities, compared to the bryophyte communities, and related to a higher extent to measured differences in environmental conditions. Tree species diversity was found to be an important factor for fungal species composition, while only small differences in bryophyte species composition were found between the different tree species. On the other hand bryophyte species richness showed distinct relations to tree species and microclimatic variables, a tendency which was not evident for fungal diversity. It is concluded that the two organism groups to some extent differ in their conservation demands. Thus, conservation of wood-inhabiting bryophytes requires prioritising of large, coherent forest stands in which a stable humid microclimate and a reasonable supply of dead wood is secured. Successful conservation of fungi requires that substantial amounts of dead wood are left for natural decay in a variety of natural forest environments representing different tree species, so that heterogeneity in dead wood types is secured.  相似文献   

16.
Forest insect pests are one of the major disturbance factors in forest ecosystems and their outbreaks are expected to be more severe under the influence of global warming. Coleopterans are dominant among forest insects and their ecological functions include general detritivores, dead wood feeders, fungivores, herbivores, live wood feeders and predators. Ambrosia and bark beetles contribute to ecological succession of forests and, therefore, ecological functions of forests can be changed in response to their outbreaks. Mountain pine beetle (MPB) outbreaks are the most dramatic example of changes in the ecological functions of forest due to the outbreak of a forest insect pest altered by global warming. Composition of coleopteran species varies with latitude. However, composition of functional groups is consistent with latitude which indicates that resources available to beetles are consistent. In coleopteran communities, ambrosia and bark beetles can become dominant due to increases of dead or stressed trees due to the warming climate. This can also induce changes in the ecological functions of coleopterans, i.e. selective force to displace trees that have lower ecological fitness due to temperature increase. Therefore, recent increases in the density ambrosia and bark beetles offer a chance to study ecological processes in forests under the influence of global warming.  相似文献   

17.
Loss of old‐growth forests and greatly reduced volumes of coarse dead wood in managed forests are the main reasons for the decline of many wood‐inhabiting species in Europe and elsewhere. To assess the habitat requirements and extinction vulnerability of 13 polypore species associated mainly with spruce, their occurrences were recorded on 96 521 dead‐wood objects in 331 stands along a regional gradient of forest utilization history across southern‐middle boreal Finland. The substrates studied included a variety of tree species and dead‐wood qualities investigated in both unmanaged and managed stands at different successional stages. Hierarchical logistic regression models were constructed to analyze the relationships between the occurrence probability of individual species and variables at the substrate, stand and regional scales. The substrate preferences of the polypore species studied overlapped, since most of them favored large‐diameter spruce logs in mid‐decay stages. However, only a few species were restricted to this substrate. Other species were able to use a wider range of host tree species and qualities of dead wood, including man‐made substrates that are abundant in managed forests (logging residues and stumps). Species confined to logs had a significantly lower occurrence probability in regions with the longest and most intensive forest use history. Species less specialized in their resource use showed no decline or the opposite trend. Loss of threatened species is likely if the preservation of old‐growth forests is not combined with conservation measures in managed forests. Increasing extraction of logging residues and stumps for biofuel may cause non‐threatened species to decline by reducing substrate qualities utilized by them. The hierarchical models predicted a considerable part of the variation in Species' occurrence probabilities, and therefore provide powerful tools for setting quantitative targets for management.  相似文献   

18.
To discern mechanisms maintaining the diversity of grassland and forest butterflies in coppice woods managed for the production of Japanese forest mushroom logs, we investigated the butterfly fauna in cut-over land tracts shortly after felling and 5 year later, and in forest stands 10, 15, and 25 year after felling (here, we use the term “forests” when referring to the chronosequence of these treed stands). Butterfly species richness and diversity (H′) and the densities of individuals were highest in cut-over lands 5 year after clear-cutting, followed by 25-year-old forest stands. In forests, the richness and densities of forest butterfly species were higher than were those of grassland species. Among forest stands of different ages, forest butterfly species’ richness and the densities of individuals were highest in 25-year-old woods nearing felling time. Some forest butterfly species were observed only in forests. The species richness and densities of grassland butterflies were much higher in cut-over lands 0 and 5 year post felling than in forests; grassland species were rarely found in stands ≥10 year old. Thus, cut-over lands seem to function as temporary habitats for grassland species. Furthermore, the number of forest butterfly species was the same in cut-over lands 5 year after felling and in 25-year-old forest stands; the densities of forest butterfly species was higher in these cut-over lands than in the forest stands. Forest butterfly species living on cut-over land 5 year post felling sipped flower nectar, laid eggs on host plants, and practiced territorial behaviour involved in mate finding. Hence, these cut-over lands functioned as important habitats for various developmental stages of forest butterflies. In conclusion, traditional coppicing in woods for production of Japanese forest mushroom logs is very important for the maintenance of diversity in grassland and forest butterfly species.  相似文献   

19.
Effective fire suppression in combination with intensive forestry has caused a large number of dead wood‐dependent (saproxylic) species to become threatened in Fennoscandia. In order to return the fire disturbance dynamics and to increase the amount of dead wood, restoration actions are urgently needed. We studied the effects of restoring young (under 30 years old) pine‐dominated (Pinus sylvestris L.) forest stands on saproxylic beetle assemblages in eastern Finland, focusing especially on rare, red‐listed, and pyrophilous (RRLP) species. Our experiment included a restoration treatment including two tree felling levels for fuel load (10 or 20 m3/ha) followed by burning, and an untreated control. We sampled beetles before restoration in 2005, during the year of restoration in 2006, and in two post‐treatment years in 2007 and 2011. Both restoration treatments increased the number of saproxylic and RRLP species. The species richness increased most in the year of restoration in 2006 and this trend continued in the following year 2007, but no differences in species assemblages were detected between the two fuel load levels. By 2011, however, the species richness and abundance had declined back to the pre‐treatment level. We suggest that restoration burning can also be directed to young forests where biodiversity values are initially low. On the basis of the observed decline in the species richness, we suggest that fire could be introduced in neighboring areas in approximately 5‐year intervals to maintain populations of the most demanding pyrophilous species .  相似文献   

20.
Dead wood is a substantial carbon stock in terrestrial forest ecosystems and hence a critical component of global carbon cycles. Given the limited amounts of dead wood biomass and carbon stock information for Caribbean forests, our objectives were to: (1) describe the relative contribution of down woody materials (DWM) to carbon stocks on the island of St. John; (2) compare these contributions among differing stand characteristics in subtropical moist and dry forests; and (3) compare down woody material carbon stocks on St. John to those observed in other tropical and temperate forests. Our results indicate that dead wood and litter comprise an average of 20 percent of total carbon stocks on St. John in both moist and dry forest life zones. Island-wide, dead wood biomass on the ground ranged from 4.55 to 28.11 Mg/ha. Coarse woody material biomass and carbon content were higher in moist forests than in dry forests. No other down woody material components differed between life zones or among vegetation categories ( P > 0.05). Live tree density was positively correlated with fine woody material and litter in the moist forest life zone ( R = 0.57 and 0.84, respectively) and snag basal area was positively correlated with total down woody material amounts ( R = 0.50) in dry forest. Our study indicates that DWM are important contributors to the total biomass and, therefore, carbon budgets in subtropical systems, and that contributions of DWM on St. John appear to be comparable to values given for similar dry forest systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号