首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In cold-blooded animals, lost sensory hair cells can be replaced via a process of regenerative cell proliferation of epithelial supporting cells. In contrast, in mammalian cochlea, receptor (hair) cells are believed to be produced only during embryogenesis; after maturity, sensory or supporting cell proliferation or regeneration are thought to occur neither under normal conditions nor after trauma. Using bromodeoxyuridine (BrdU) as a proliferation marker, we have assessed cell proliferation activity in the mature organ of Corti in the cochlea of young guinea pigs following severe damage to the outer hair cells induced by kanamycin sulfate and ethacrynic acid. Although limited, we have found BrdU-labeled nuclei in the regions of Deiters cells when BrdU is given for 3 days or longer. When BrdU is given for 10 days, at least one labeled nucleus can be observed in the organ of Corti in approximately half of the ears; proliferating cells typically appear as paired daughters, with one nucleus being displaced away from the basement membrane to the position expected of the hair cells. Double-staining with antibodies to cytokeratin, vimentin, and p27 have shown that the BrdU-labeled nuclei are located in cells phenotypically similar to Deiters cells. Most of the uptake of BrdU occurs 3–5 days following ototoxic insult, and the number of BrdU-labeled cells does not decrease until 30 days following insult. These findings indicate that Deiters cells in the mature mammalian cochlea maintain a limited competence to re-enter the cell cycle and proliferate after hair cell injury, and that they can survive at least for 1 month.This work was supported by the Ministry of Health, Labour, and Welfare, Japan (grants 12120101, 15110201) and by the Ministry of Education, Culture, Sports, Science, and Technology, Japan (grant 13470357) to T.Y.  相似文献   

2.
The human ear is capable of processing sound with a remarkable resolution over a wide range of intensity and frequency. This ability depends largely on the extraordinary feats of the hearing organ, the organ of Corti and its sensory hair cells. The organ of Corti consists of precisely patterned rows of sensory hair cells and supporting cells along the length of the snail-shaped cochlear duct. On the apical surface of each hair cell, several rows of actin-containing protrusions, known as stereocilia, form a "V"-shaped staircase. The vertices of all the "V"-shaped stereocilia point away from the center of the cochlea. The uniform orientation of stereocilia in the organ of Corti manifests a distinctive form of polarity known as planar cell polarity (PCP). Functionally, the direction of stereociliary bundle deflection controls the mechanical channels located in the stereocilia for auditory transduction. In addition, hair cells are tonotopically organized along the length of the cochlea. Thus, the uniform orientation of stereociliary bundles along the length of the cochlea is critical for effective mechanotransduction and for frequency selection. Here we summarize the morphological and molecular events that bestow the structural characteristics of the mammalian hearing organ, the growth of the snail-shaped cochlear duct and the establishment of PCP in the organ of Corti. The PCP of the sensory organs in the vestibule of the inner ear will also be described briefly.  相似文献   

3.
The mammalian auditory sensory epithelium, the organ of Corti, contains sensory hair cells and nonsensory supporting cells arranged in a highly patterned mosaic. Notch-mediated lateral inhibition is the proposed mechanism for creating this sensory mosaic. Previous work has shown that mice lacking the Notch ligand JAG2 differentiate supernumerary hair cells in the cochlea, consistent with the lateral inhibitory model. However, it was not clear why only relatively modest increases in hair cell production were observed in Jag2 mutant mice. Here, we show that another Notch ligand, DLL1, functions synergistically with JAG2 in regulating hair cell differentiation in the cochlea. We also show by conditional inactivation that these ligands probably signal through the NOTCH1 receptor. Supernumerary hair cells in Dll1/Jag2 double mutants arise primarily through a switch in cell fate, rather than through excess proliferation. Although these results demonstrate an important role for Notch-mediated lateral inhibition during cochlear hair cell patterning, we also detected abnormally prolonged cellular proliferation that preferentially affected supporting cells in the organ of Corti. Our results demonstrate that the Notch pathway plays a dual role in regulating cellular differentiation and patterning in the cochlea, acting both through lateral inhibition and the control of cellular proliferation.  相似文献   

4.
5.
6.
In the adult mammalian auditory epithelium, the organ of Corti, loss of sensory hair cells results in permanent hearing loss. The underlying cause for the lack of regenerative response is the depletion of otic progenitors in the cell pool of the sensory epithelium. Here, we show that an increase in the sequence-specific methylation of the otic Sox2 enhancers NOP1 and NOP2 is correlated with a reduced self-renewal potential in vivo and in vitro; additionally, the degree of methylation of NOP1 and NOP2 is correlated with the dedifferentiation potential of postmitotic supporting cells into otic stem cells. Thus, the stemness the organ of Corti is related to the epigenetic status of the otic Sox2 enhancers. These observations validate the continued exploration of treatment strategies for dedifferentiating or reprogramming of differentiated supporting cells into progenitors to regenerate the damaged organ of Corti.  相似文献   

7.
The mammalian organ of Corti is a highly specialized sensory organ of the cochlea with a fine-grained pattern that is essential for auditory function. The sensory epithelium, the organ of Corti consists of a single row of inner hair cells and three rows of outer hair cells that are intercalated by support cells in a mosaic pattern. Previous studies show that the Wnt pathway regulates proliferation, promotes medial compartment formation in the cochlea, differentiation of the mechanosensory hair cells and axon guidance of Type II afferent neurons. WNT ligand expressions are highly dynamic throughout development but are insufficient to explain the roles of the Wnt pathway. We address a potential way for how WNTs specify the medial compartment by characterizing the expression of Porcupine (PORCN), an O-acyltransferase that is required for WNT secretion. We show PORCN expression across embryonic ages (E)12.5 - E14.5, E16.5, and postnatal day (P)1. Our results showed enriched PORCN in the medial domains during early stages of development, indicating that WNTs have a stronger influence on patterning of the medial compartment. PORCN was rapidly downregulated after E14.5, following the onset of sensory cell differentiation; residual expression remained in some hair cells and supporting cells. On E14.5 and E16.5, we also examined the spatial expression of Gsk3β, an inhibitor of canonical Wnt signaling to determine its potential role in radial patterning of the cochlea. Gsk3β was broadly expressed across the radial axis of the epithelium; therefore, unlikely to control WNT-mediated medial specification. In conclusion, the spatial expression of PORCN enriches WNT secretion from the medial domains of the cochlea to influence the specification of cell fates in the medial sensory domain.  相似文献   

8.
In all mammals, the sensory epithelium for audition is located along the spiraling organ of Corti that resides within the conch shaped cochlea of the inner ear (fig 1). Hair cells in the developing cochlea, which are the mechanosensory cells of the auditory system, are aligned in one row of inner hair cells and three (in the base and mid-turns) to four (in the apical turn) rows of outer hair cells that span the length of the organ of Corti. Hair cells transduce sound-induced mechanical vibrations of the basilar membrane into neural impulses that the brain can interpret. Most cases of sensorineural hearing loss are caused by death or dysfunction of cochlear hair cells.An increasingly essential tool in auditory research is the isolation and in vitro culture of the organ explant 1,2,9. Once isolated, the explants may be utilized in several ways to provide information regarding normative, anomalous, or therapeutic physiology. Gene expression, stereocilia motility, cell and molecular biology, as well as biological approaches for hair cell regeneration are examples of experimental applications of organ of Corti explants.This protocol describes a method for the isolation and culture of the organ of Corti from neonatal mice. The accompanying video includes stepwise directions for the isolation of the temporal bone from mouse pups, and subsequent isolation of the cochlea, spiral ligament, and organ of Corti. Once isolated, the sensory epithelium can be plated and cultured in vitro in its entirety, or as a further dissected micro-isolate that lacks the spiral limbus and spiral ganglion neurons. Using this method, primary explants can be maintained for 7-10 days. As an example of the utility of this procedure, organ of Corti explants will be electroporated with an exogenous DsRed reporter gene. This method provides an improvement over other published methods because it provides reproducible, unambiguous, and stepwise directions for the isolation, microdissection, and primary culture of the organ of Corti.  相似文献   

9.
FGFR1 is required for the development of the auditory sensory epithelium   总被引:12,自引:0,他引:12  
The mammalian auditory sensory epithelium, the organ of Corti, comprises the hair cells and supporting cells that are pivotal for hearing function. The origin and development of their precursors are poorly understood. Here we show that loss-of-function mutations in mouse fibroblast growth factor receptor 1 (Fgfr1) cause a dose-dependent disruption of the organ of Corti. Full inactivation of Fgfr1 in the inner ear epithelium by Foxg1-Cre-mediated deletion leads to an 85% reduction in the number of auditory hair cells. The primary cause appears to be reduced precursor cell proliferation in the early cochlear duct. Thus, during development, FGFR1 is required for the generation of the precursor pool, which gives rise to the auditory sensory epithelium. Our data also suggest that FGFR1 might have a distinct later role in intercellular signaling within the differentiating auditory sensory epithelium.  相似文献   

10.
During embryonic development of the inner ear, the sensory primordium that gives rise to the organ of Corti from within the cochlear epithelium is patterned into a stereotyped array of inner and outer sensory hair cells separated from each other by non-sensory supporting cells. Math1, a close homolog of the Drosophila proneural gene atonal, has been found to be both necessary and sufficient for the production of hair cells in the mouse inner ear. Our results indicate that Math1 is not required to establish the postmitotic sensory primordium from which the cells of the organ of Corti arise, but instead is limited to a role in the selection and/or differentiation of sensory hair cells from within the established primordium. This is based on the observation that Math1 is only expressed after the appearance of a zone of non-proliferating cells that delineates the sensory primordium within the cochlear anlage. The expression of Math1 is limited to a subpopulation of cells within the sensory primordium that appear to differentiate exclusively into hair cells as the sensory epithelium matures and elongates through a process that probably involves radial intercalation of cells. Furthermore, mutation of Math1 does not affect the establishment of this postmitotic sensory primordium, even though the subsequent generation of hair cells is blocked in these mutants. Finally, in Math1 mutant embryos, a subpopulation of the cells within the sensory epithelium undergo apoptosis in a temporal gradient similar to the basal-to-apical gradient of hair cell differentiation that occurs in the cochlea of wild-type animals.  相似文献   

11.
Strict control of cellular proliferation is required to shape the complex structures of the developing embryo. The organ of Corti, the auditory neuroepithelium of the inner ear in mammals, consists of two types of terminally differentiated mechanosensory hair cells and at least four types of supporting cells arrayed precisely along the length of the spiral cochlea. In mice, the progenitors of greater than 80% of both hair cells and supporting cells undergo their terminal division between embryonic day 13 (E13) and E14. As in humans, these cells persist in a non-proliferative state throughout the adult life of the animal. Here we report that the correct timing of cell cycle withdrawal in the developing organ of Corti requires p27(Kip1), a cyclin-dependent kinase inhibitor that functions as an inhibitor of cell cycle progression. p27(Kip1) expression is induced in the primordial organ of Corti between E12 and E14, correlating with the cessation of cell division of the progenitors of the hair cells and supporting cells. In wild-type animals, p27(Kip1) expression is downregulated during subsequent hair cell differentiation, but it persists at high levels in differentiated supporting cells of the mature organ of Corti. In mice with a targeted deletion of the p27(Kip1) gene, proliferation of the sensory cell progenitors continues after E14, leading to the appearance of supernumerary hair cells and supporting cells. In the absence of p27(Kip1), mitotically active cells are still observed in the organ of Corti of postnatal day 6 animals, suggesting that the persistence of p27(Kip1) expression in mature supporting cells may contribute to the maintenance of quiescence in this tissue and, possibly, to its inability to regenerate. Homozygous mutant mice are severely hearing impaired. Thus, p27(Kip1) provides a link between developmental control of cell proliferation and the morphological development of the inner ear.  相似文献   

12.
Taylor RR  Jagger DJ  Forge A 《PloS one》2012,7(1):e30577

Background

Following the loss of hair cells from the mammalian cochlea, the sensory epithelium repairs to close the lesions but no new hair cells arise and hearing impairment ensues. For any cell replacement strategy to be successful, the cellular environment of the injured tissue has to be able to nurture new hair cells. This study defines characteristics of the auditory sensory epithelium after hair cell loss.

Methodology/Principal Findings

Studies were conducted in C57BL/6 and CBA/Ca mice. Treatment with an aminoglycoside-diuretic combination produced loss of all outer hair cells within 48 hours in both strains. The subsequent progressive tissue re-organisation was examined using immunohistochemistry and electron microscopy. There was no evidence of significant de-differentiation of the specialised columnar supporting cells. Kir4.1 was down regulated but KCC4, GLAST, microtubule bundles, connexin expression patterns and pathways of intercellular communication were retained. The columnar supporting cells became covered with non-specialised cells migrating from the outermost region of the organ of Corti. Eventually non-specialised, flat cells replaced the columnar epithelium. Flat epithelium developed in distributed patches interrupting regions of columnar epithelium formed of differentiated supporting cells. Formation of the flat epithelium was initiated within a few weeks post-treatment in C57BL/6 mice but not for several months in CBA/Ca''s, suggesting genetic background influences the rate of re-organisation.

Conclusions/Significance

The lack of dedifferentiation amongst supporting cells and their replacement by cells from the outer side of the organ of Corti are factors that may need to be considered in any attempt to promote endogenous hair cell regeneration. The variability of the cellular environment along an individual cochlea arising from patch-like generation of flat epithelium, and the possible variability between individuals resulting from genetic influences on the rate at which remodelling occurs may pose challenges to devising the appropriate regenerative therapy for a deaf patient.  相似文献   

13.

Background  

During mouse development, the precursor cells that give rise to the auditory sensory organ, the organ of Corti, are specified prior to embryonic day 14.5 (E14.5). Subsequently, the sensory domain is patterned precisely into one row of inner and three rows of outer sensory hair cells interdigitated with supporting cells. Both the restriction of the sensory domain and the patterning of the sensory mosaic of the organ of Corti involve Notch-mediated lateral inhibition and cellular rearrangement characteristic of convergent extension. This study explores the expression and function of a putative Notch target gene.  相似文献   

14.
15.
The auditory sensory epithelium (organ of Corti), where sound waves are converted to electrical signals, comprises a highly ordered array of sensory receptor (hair) cells and nonsensory supporting cells. Here, we report that Sprouty2, which encodes a negative regulator of signaling via receptor tyrosine kinases, is required for normal hearing in mice, and that lack of SPRY2 results in dramatic perturbations in organ of Corti cytoarchitecture: instead of two pillar cells, there are three, resulting in the formation of an ectopic tunnel of Corti. We demonstrate that these effects are due to a postnatal cell fate transformation of a Deiters' cell into a pillar cell. Both this cell fate change and hearing loss can be partially rescued by reducing Fgf8 gene dosage in Spry2 null mutant mice. Our results provide evidence that antagonism of FGF signaling by SPRY2 is essential for establishing the cytoarchitecture of the organ of Corti and for hearing.  相似文献   

16.
Hearing impairment caused by ototoxic insults, such as noise or gentamicin is a worldwide health problem. As the molecular circuitries involved are not yet resolved, current otoprotective therapies are rather empirical than rational. Here, immunohistochemistry and western blotting showed that the cytoprotective protein survivin is expressed in the human and guinea pig cochlea. In the guinea pig model, moderate noise exposure causing only a temporary hearing impairment transiently evoked survivin expression in the spiral ligament, nerve fibers and the organ of Corti. Mechanistically, survivin upregulation may involve nitric oxide (NO)-induced Akt signaling, as enhanced expression of the endothelial NO synthase and phosphorylated Akt were detectable in some surviving-positive cell types. In contrast, intratympanic gentamicin injection inducing cell damage and permanent hearing loss correlated with attenuated survivin levels in the cochlea. Subsequently, the protective activity of the human and the guinea pig survivin orthologs against the ototoxin gentamicin was demonstrated by ectopic overexpression and RNAi-mediated depletion studies in auditory cells in vitro. These data suggest that survivin represents an innate cytoprotective resistor against stress conditions in the auditory system. The pharmacogenetic modulation of survivin may thus provide the conceptual basis for the rational design of novel therapeutic otoprotective strategies.  相似文献   

17.
Cochlear supporting cells (SCs) are glia-like cells critical for hearing function. In the neonatal cochlea, the greater epithelial ridge (GER) is a mitotically quiescent and transient organ, which has been shown to nonmitotically regenerate SCs. Here, we ablated Lgr5+ SCs using Lgr5-DTR mice and found mitotic regeneration of SCs by GER cells in vivo. With lineage tracing, we show that the GER houses progenitor cells that robustly divide and migrate into the organ of Corti to replenish ablated SCs. Regenerated SCs display coordinated calcium transients, markers of the SC subtype inner phalangeal cells, and survive in the mature cochlea. Via RiboTag, RNA-sequencing, and gene clustering algorithms, we reveal 11 distinct gene clusters comprising markers of the quiescent and damaged GER, and damage-responsive genes driving cell migration and mitotic regeneration. Together, our study characterizes GER cells as mitotic progenitors with regenerative potential and unveils their quiescent and damaged translatomes.

Cochlear supporting cells are glia-like cells essential for hearing. Genetic ablation of Lgr5+ supporting cells reveals a population of damage inducible, mitotically activated progenitors in the greater epithelial ridge, which can divide and migrate into the organ of Corti to replenish ablated supporting cells. Translatomic analyses provide insights into the genes that may regulate this regenerative potential.  相似文献   

18.
Cellular commitment and differentiation in the organ of Corti   总被引:2,自引:0,他引:2  
The organ of Corti, the sensory epithelium of the mammalian cochlea, develops from a subset of cells located along the dorsal side (referred to as the floor) of the cochlear duct. Over the course of embryonic development, cells within the developing organ of Corti become committed to develop as each of the unique cell types within the organ, including inner and outer hair cells, and at least four different types of supporting cells. Moreover, these different cell types are subsequently arranged into a highly rigorous cellular mosaic that includes the formation of ordered rows of both hair cells and supporting cells. The events that regulate both the location of the organ of Corti within the cochlear duct, the specification of each cell type and cellular patterning remain poorly understood. However, recent results have significantly improved our understanding of the molecular, genetic and cellular factors that mediate some of the decisions required for the development of this structure. In this review I will present an overview of cochlear development and then discuss some of the most recent and enlightening results regarding the molecular mechanism underlying the formation of this remarkable structure.  相似文献   

19.
Auditory discrimination is limited by the performance of the cochlea whose acute sensitivity and frequency tuning are underpinned by electromechanical feedback from the outer hair cells. Two processes may underlie this feedback: voltage-driven contractility of the outer hair cell body and active motion of the hair bundle. Either process must exert its mechanical effect via deformation of the organ of Corti, a complex assembly of sensory and supporting cells riding on the basilar membrane. Using finite element analysis, we present a three-dimensional model to illustrate deformation of the organ of Corti by the two active processes. The model used available measurements of the properties of structural components in low-frequency and high-frequency regions of the rodent cochlea. The simulations agreed well with measurements of the cochlear partition stiffness, the longitudinal space constant for point deflection, and the deformation of the organ of Corti for current injection, as well as displaying a 20-fold increase in passive resonant frequency from apex to base. The radial stiffness of the tectorial membrane attachment was found to be a crucial element in the mechanical feedback. Despite a substantial difference in the maximum force generated by hair bundle and somatic motility, the two mechanisms induced comparable amplitudes of motion of the basilar membrane but differed in the polarity of their feedback on hair bundle position. Compared to the hair bundle motor, the somatic motor was more effective in deforming the organ of Corti than in displacing the basilar membrane.  相似文献   

20.
Heme oxygenase-1 (HO-1), the rate-limiting enzyme of heme catabolism, is known to modulate various cellular functions, including cytokine production, cell proliferation, and apoptosis, in stress-related conditions. However, the role of HO-1 in the auditory system remains elusive. Herein, we demonstrate that pharmacologic induction of HO-1 along with catalytic activation significantly suppressed apoptosis of HEI-OC1 cells induced by cisplatin. Studies of ectopic expression of pcDNA3-HO-1 and siRNA of HO-1 further revealed the protective role of HO-1 against cisplatin in HEI-OC1 cells. Among the catabolic metabolites of HO-1, both carbon monoxide (CO) and bilirubin were directly involved in the protective role of HO-1 against cisplatin through inhibition of reactive oxygen species generation. Furthermore, pharmacological induction of HO-1 completely prevented the destruction of outer hair cell arrays by cisplatin through a CO-dependent mechanism in organotrophic culture of the rat primary organ of Corti explants. These results suggest that HO-1 may serve as a safeguard of auditory sensory hair cells against a variety of challenges of oxidative stress, including noise trauma, presbycusis, and ototoxic drugs, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号