首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the rat phrenic nerve-diaphragm muscle preparation, X-537A at 6×10?6 to 3×10?5 M (1) depolarized muscle fibre membranes, (2) caused an occasional transient increase in and ultimate block of spontaneous transmitter release, (3) did not increase the amplitude of the end-plate potential (epp) but abruptly blocked stimulus-evoked transmitter release, and (4) produced an increase in the occurrence of “giant” miniature epp's (mepp's). The possibility is discussed that the sporadically raised mepp frequency was due to an ionophore-induced depolarization of nerve terminals. The increased occurrence of “giant” mepp's apparently reflected a X-537A-induced spontaneous multiquantal release of acetylcholine. This was not dependent on extracellular calcium but appeared to be of presynaptic origin.  相似文献   

2.
Electro-optic scattering studies on deoxyribonucleic acid   总被引:1,自引:0,他引:1  
B R Jennings  H Plummer 《Biopolymers》1970,9(11):1361-1372
Measurements have been made of the intensity of light scattered from aqueous solutions of calf thymus DNA with and without the application of electric fields. For fields approaching 150 V/cm and frequencies below 2.5 KHz, changes (ΔI) of up to 10% in the residual scattered intensity were observed. In agreement with previous dielectric and electric birefringence measurements, a low frequency dispersion of ΔI was observed, from which a rotary diffusion constant (D) of 1200 s?1 was determined. Interpreting the electric field data in terms of the classical dipolar orientation theory led to values of 2.4 × 10?25 cm (7.4 × 10?14 esu) and 4.3 × 10?25 cm (13 × 10?14 esu) for the permanent dipole moment and the anisotropy of the electric polarisabilities respectively. Furthermore the permanent dipole moment was along the major molecular axis and the particles orientated in the field as rigid entities. The zero field data indicated a molecular shape which was not rodlike but corresponded to the Kratky-Porod “stiffness” parameter of x = 24 for the wormlike coil model. Although curved, the molecules appeared to orientate in low-intensity electric fields as rigid, but not rodlike molecules. The implications of this on recent discrepancies in D determined by two or more dynamic relaxation methods is briefly discussed.  相似文献   

3.
The cell membranes exhibited specific binding to 3H-prostaglandin E1 (3H-PGE1) and 125I-human chorionic gonadotropin (125I-HCG). Unlabeled PGE1,PGE2 (1.4 × 10?7M), PGF and PGF (1.4 × 10?5M) decreased 3H-PGE1 binding by more than 80%. The binding of 125I-HCG was completely inhibited by 5 × 10?8M unlabeled HCG. However, the unlabeled PGE1 (1.15 × 10?6M) and HCG (8.4 × 10?7M) had no effect on 125I-HCG and 3H-PGE1 binding respectively. A PG antagonist, 7-oxa-13-prostynoic acid, inhibited only 3H-PGE1 binding but not 125I-HCG binding. These results suggest the presence of specific receptors for PGE1 and HCG in the cell membranes and that the binding occurs either at two different sites on the same receptor or that each binds to a “different” receptor molecule.  相似文献   

4.
As part of a programme of comparative measurements of P d (diffusional water permeability) the RBCs (red blood cells) from an aquatic monotreme, platypus (Ornithorhynchus anatinus), and an aquatic reptile, saltwater crocodile (Crocodylus porosus) were studied. The mean diameter of platypus RBCs was estimated by light microscopy and found to be ~6.3 μm. P d was measured by using an Mn2+‐doping 1H NMR (nuclear magnetic resonance) technique. The P d (cm/s) values were relatively low: ~2.1×10?3 at 25°C, 2.5×10?3 at 30°C, 3.4×10?3 at 37°C and 4.5 at 42°C for the platypus RBCs and ~2.8×10?3 at 25°C, 3.2×10?3 at 30°C, 4.5×10?3 at 37°C and 5.7×10?3 at 42°C for the crocodile RBCs. In parallel with the low water permeability, the E a,d (activation energy of water diffusion) was relatively high, ~35 kJ/mol. These results suggest that “conventional” WCPs (water channel proteins), or AQPs (aquaporins), are probably absent from the plasma membranes of RBCs from both the platypus and the saltwater crocodile.  相似文献   

5.
Both environmental and genetic factors impact lipid traits. Environmental modifiers of known genotype–phenotype associations may account for some of the “missing heritability” of these traits. To identify such modifiers, we genotyped 23 lipid-associated variants identified previously through genome-wide association studies (GWAS) in 2,435 non-Hispanic white, 1,407 non-Hispanic black, and 1,734 Mexican-American samples collected for the National Health and Nutrition Examination Surveys (NHANES). Along with lipid levels, NHANES collected environmental variables, including fat-soluble macronutrient serum levels of vitamin A and E levels. As part of the Population Architecture using Genomics and Epidemiology (PAGE) study, we modeled gene–environment interactions between vitamin A or vitamin E and 23 variants previously associated with high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels. We identified three SNP?×?vitamin A and six SNP?×?vitamin E interactions at a significance threshold of p?<?2.2?×?10?3. The most significant interaction was APOB rs693?×?vitamin E (p?=?8.9?×?10?7) for LDL-C levels among Mexican-Americans. The nine significant interaction models individually explained 0.35–1.61?% of the variation in any one of the lipid traits. Our results suggest that vitamins A and E may modify known genotype–phenotype associations; however, these interactions account for only a fraction of the overall variability observed for HDL-C, LDL-C, and TG levels in the general population.  相似文献   

6.
NADPH-cytochrome c reductase has been isolated from a top-fermenting ale yeast, Saccharomyces cerevisiae (Narragansett strain), after ca. a 240-fold purification over the initial extract of an acetone powder, with a final specific activity (at pH 7.6, 30 °C) of ca. 150 μmol cytochrome c reduced min?1mg?1 protein. The preparation appears to be homogeneous by the criteria of: sedimentation velocity; electrophoresis on cellulose acetate in buffers above neutrality; and by polyacrylamide gel electrophoresis. Although the reductase appeared to partially separate into species “A” and “B” on DEAE-cellulose at pH 8.8, the two species have proven to be indistinguishable electrophoretically (above pH 8) and by sedimentation. By sedimentation equilibrium at 20 °C, a molecular weight of ca. 6.8 (± 0.4) × 104 was obtained with use of a V?20 ° = 0.741 calculated from its amino acid composition. After disruption in 4 m guanidinium chloride- 10 mm dithioerythritol- 1 mm EDTA, pH 6.4 at 20 °C, an M?r of 3.4 (± 0.1) × 104 resulted, which points to a subunit structure of two polypeptide chains per mole. Confirmatory evidence of the two-subunit structure with similar, if not identical, polypeptide chains was obtained by polyacrylamide gel electrophoresis in dodecyl-sulfate, after disruption in 4 m urea and 2% sodium dodecyl sulfate, and yielded a subunit molecular weight of ca. 4 × 104. Sulfhydryl group titration with 4,4′-dithiodipyridine under acidic conditions revealed one sulfhydryl group per monomer, which apparently is necessary for the catalytic reduction of cytochrome c. NADPH, as well as FAD, protects this-SH group from reaction with 5,5′-dithiobis (2-nitrobenzoate). The visible absorption spectrum of the oxidized enzyme (as prepared) has absorption maxima at 383 and 455 nm, typical of a flavoprotein. Flavin analysis (after dissociation by thermal denaturation of the “A” protein) conducted fluorometrically, revealed the presence of 2.0 mol of FAD per 70,000 g, in confirmation of the deduced subunit structure. The identity of the FAD dissociated from either “A” or “B” protein was confirmed by recombination with apo-d-amino acid oxidase and by thin-layer chromatography. A kinetic approach was used to estimate the dissociation constant for either FAD or FMN (which also yields a catalytically active enzyme) to the apoprotein reductase at 30 °C and pH 7.6 (0.05 m phosphate) and yielded values of 4.7 × 10?8m for FAD and 4.4 × 10?8m for FMN.  相似文献   

7.
The specific binding of DCMU and atrazine to the thylakoid membranes of a uniparentally inherited DCMU-resistant mutant dr-416 of Chlamydomonas reinhardii was measured. Whole cells of the mutant can tolerate a 15-fold concentration of DCMU as compared to the parent strain. The same tolerance is found for the photosystem II activity of isolated thylakoid membranes. The mutant is not resistant against atrazine. In equilibrium-binding studies with [14C]atrazine and unlabelled DCMU, the specific binding for atrazine was found to be identical in the mutant and in the parent strain. The competitive binding of DCMU is significantly weaker for membranes of the mutant than of the parent strain, the equilibrium dissociation constants being 2.0 × 10?7 M and 3.8 × 10?8 M, respectively.  相似文献   

8.
3H-nicotine binding was performed on intact and solubilized rat brain membranes as well as membranes from the electric organ of the Torpedo fish. The Kd for binding to intact and solubilized rat brain membranes was 5.6 × 10?9 M and 1.1 × 10?8M respectively, and the binding capacity 2.0 × 10?14 and 3.0 × 10?13 moles /mg protein respectively. The Kd for Torpedo membranes was 3.1 × 10?7M and the binding capacity 6.8 × 10?13 moles/mg protein. The binding was stereospecific with the affinity of the (?)-nicotine being about 8 times greater than the (+)-nicotine with all three preparations. The relative affinity for the nicotine binding site of nicotinic cholinergic drugs was considerably less in rat brain than in Torpedo membranes, where the sites are mainly cholinergic. A comparison was made of the ability of a variety of cholinergic drugs and nicotine derivatives to compete with 3H-nicotine binding and their relative pharmacologic potency to produce or inhibit a characteristic prostration syndrome caused by (?)-nicotine administered intraventricularly to rats. From such studies it was concluded that nicotine, in part, may be interacting at noncholinergic sites in rat brain.  相似文献   

9.
The enantiomeric purity of escitalopram oxalate ESC and its “in‐process impurities,” namely, ESC‐N‐oxide, ESC‐citadiol, and R(?)‐enantiomer were studied in drug substance and products using high‐performance liquid chromatography (HPLC)‐UV (Method I), synchronous fluorescence spectroscopy (SFS) (Method IIA), and first derivative SFS (Method IIB). Method I describes as an isocratic HPLC‐UV for the direct resolution and determination of enantiomeric purity of ESC and its “in‐process impurities.” The proposed method involved the use of αl‐acid glycoprotein (AGP) chiral stationary phase. The regression plots revealed good linear relationships of concentration range of 0.25 to 100 and 0.25 to 10 μg mL?1 for ESC and its impurities. The limits of detection and quantifications for ESC were 0.075 and 0.235 μg mL?1, respectively. Method II involves the significant enhancement of the fluorescence intensities of ESC and its impurities through inclusion complexes formation with hydroxyl propyl‐β‐cyclodextrin as a chiral selector in Micliavain buffer. Method IIA describes SFS technique for assay of ESC at 225 nm in presence of its impurities: R(?)‐enantiomer, citadiol, and N‐oxide at ?λ of 100 nm. This method was extended to (Method IIB) to apply first derivative SFS for the simultaneous determination of ESC at 236 nm and its impurities: the R(?)‐enantiomer, citadiol, and N‐oxide at 308, 275, and 280 nm, respectively. Linearity ranges were found to be 0.01 to 1.0 μg mL?1 for ESC and its impurities with lower detection and quantification limits of 0.033/0.011 and 0.038/0.013 μg mL?1 for SFS and first derivative synchronous fluorescence spectra (FDSFS), respectively. The methods were used to investigate the enantiomeric purity of escitalopram.  相似文献   

10.
Synovial fluid (SF) contains lubricant macromolecules, hyaluronan (HA), and proteoglycan 4 (PRG4). The synovium not only contributes lubricants to SF through secretion by synoviocyte lining cells, but also concentrates lubricants in SF due to its semi‐permeable nature. A membrane that recapitulates these synovium functions may be useful in a bioreactor system for generating a bioengineered fluid (BF) similar to native SF. The objectives were to analyze expanded polytetrafluoroethylene membranes with pore sizes of 50 nm, 90 nm, 170 nm, and 3 µm in terms of (1) HA and PRG4 secretion rates by adherent synoviocytes, and (2) the extent of HA and PRG4 retention with or without synoviocytes adherent on the membrane. Experiment 1: Synoviocytes were cultured on tissue culture (TC) plastic or membranes ± IL‐1β + TGF‐β1 + TNF‐α, a cytokine combination that stimulates lubricant synthesis. HA and PRG4 secretion rates were assessed by analysis of medium. Experiment 2: Bioreactors were fabricated to provide a BF compartment enclosed by membranes ± adherent synoviocytes, and an external compartment of nutrient fluid (NF). A solution with HA (1 mg/mL, MW ranging from 30 to 4,000 kDa) or PRG4 (50 µg/mL) was added to the BF compartment, and HA and PRG4 loss into the NF compartment after 2, 8, and 24 h was determined. Lubricant loss kinetics were analyzed to estimate membrane permeability. Experiment 1: Cytokine‐regulated HA and PRG4 secretion rates on membranes were comparable to those on TC plastic. Experiment 2: Transport of HA and PRG4 across membranes was lowest with 50 nm membranes and highest with 3 µm membranes, and transport of high MW HA was decreased by adherent synoviocytes (for 50 and 90 nm membranes). The permeability to HA mixtures for 50 nm membranes was ~20 × 10?8 cm/s (? cells) and ~5 × 10?8 cm/s (+ cells), for 90 nm membranes was ~35 × 10?8 cm/s (? cells) and ~19 × 10?8 cm/s (+ cells), for 170 nm membranes was ~74 × 10?8 cm/s (± cells), and for 3 µm membranes was ~139 × 10?8 cm/s (± cells). The permeability of 450 kDa HA was ~40× lower than that of 30 kDa HA for 50 nm membranes, but only ~2.5× lower for 3 µm membranes. The permeability of 4,000 kDa HA was ~250× lower than that of 30 kDa HA for 50 nm membranes, but only ~4× lower for 3 µm membranes. The permeability for PRG4 was ~4 × 10?8 cm/s for 50 nm membranes, ~48 × 10?8 cm/s for 90 nm membranes, ~144 × 10?8 cm/s for 170 nm membranes, and ~336 × 10?8 cm/s for 3 µm membranes. The associated loss across membranes after 24 h ranged from 3% to 92% for HA, and from 3% to 93% for PRG4. These results suggest that semi‐permeable membranes may be used in a bioreactor system to modulate lubricant retention in a bioengineered SF, and that synoviocytes adherent on the membranes may serve as both a lubricant source and a barrier for lubricant transport. Biotechnol. Bioeng. 2010; 106: 149–160. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
Insulin binding to human fetal plasma liver membranes was studied in preparations segregated into three pools according to length of gestation: 15–18 weeks (Pool A), 19–25 weeks (Pool B), and 26–31 weeks (Pool C). Receptor numbers, calculated by extrapolation of Scatchard plots to the X axis, increased from 25 × 1010 sites per 100 μg protein in the youngest group (Pool A) to 46 × 1010 sites per 100 μg protein in Pool B. No further increase in receptor number was seen in Pool C. The affinity constant for insulin at tracer concentrations, Ke (“empty site”), was 1.53 × 108M?1 in Pool A and was only slightly higher than Kf (“filled site”). Ke was higher in Pool B, 1.75 × 108M?1, and in Pool C reached a value of 5.63 × 108M?1. In Pool C Kf was 2.3 × 108M?1. Insulin binding of liver plasma membranes from rat fetuses aged 14, 16, 18, and 21 (term) days and adults was also studied. Maximum binding capacity tended to increase with gestational age and was 130 × 1010 sites per 100 μg protein at term, which was in excess of that found in adult rats (89–90 × 1010). In addition, Ke increased from 0.75 × 108M?1 at 14 days to 3.02 × 108M?1 at term, a value higher than that found in pregnant and nonpregnant adults. Dissociation of insulin in the presence of high concentrations of insulin was significantly enhanced in tissues from 18-day and term fetuses and adults, but not in membranes from fetal rats aged 14 and 16 days. These data appear to indicate that site-site interactions are not present in early fetal existence. These changes in insulin binding with increased length of gestation are not ascribable to changes in relative proportions of hematopoietic and parenchymal tissue. Human fetal plasma liver membranes demonstrated elevated insulin binding with increased gestational age, but comparison of fetal and adult liver could not be done. However, newborn human infants have been shown to have a higher capacity for binding insulin to circulating monocytes than adults. Also, human fetuses apparently lack the capability to diminish monocyte receptors in the presence of hyperinsulinemia. These experiments show that an increase in insulin receptor binding capacity and affinity also occurs in the liver of the rat fetus at term as compared to the adult rat. The reasons and mechanisms underlying enhanced capacity for insulin binding by fetal and newborn members of human and rodent species are not known.  相似文献   

12.
In this paper, a novel riboregulator Switch System of Gene Expression including an OFF-TO-ON switch and an ON-TO-OFF switch was designed to regulate the expression state of target genes between “ON” and “OFF” by switching the identifiability of ribosome recognition site (RBS) based on the thermodynamic stability of different RNA–RNA hybridizations between RBS and small noncoding RNAs. The proposed riboregulator switch system was employed for the fermentative production of succinic acid using an engineered strain of E. coli JW1021, during which the expression of mgtC gene was controlled at “ON” state and that of pepc and ecaA genes were controlled at the “OFF” state in the lag phase and switched to the “OFF” and “ON” state once the strain enters the logarithmic phase. The results showed that using the strain of JW1021, the yield and productivity of succinic acid can reach 0.91 g g?1 and 3.25 g L?1 h?1, respectively, much higher than those using the strains without harboring the riboregulator switch system.  相似文献   

13.
Electro-optical characterization of the photoreceptor disk membrane vesicle is performed by examining the electric field and concentration dependence of the steady-state birefringence of aqueous suspensions of the vesicles. The electric polarizability anisotropy is found to be negative and of large magnitude: α12 = ?(1?3) × 10?10 cm3. The optical anisotropy is determined to be also negative but of small magnitude: g1 ?g2 = ?1 × 10?7. The specific Kerr constant deduced from the concentration dependence of the Kerr constant is found to be very large: Ksp = 7 × 10?4 c.s.u. Upon deforming the vesicles osmotically from the spherical shell to the disk structure, the steady-state birefringence increases by an order of magnitude which is attributed solely to the increase in optical anisotropy attending the corresponding change in the geometric eccentricity of the vesicle. A plausible birefringence mechanism based on the known structural features of the vesicles is proposed, which would account for these findings.  相似文献   

14.
Spectroscopic Changes in the Chlorophyll a of Porphyridium Induced by Illumination and Chemical Action and Observed at ?196°C. Photo-oxidation of P700 by 708 nm light can take place under weak intensity (10?6 W × cm?2) when the medium is frozen. Spectral characteristics of “700 nm” and “690 nm” variations are accurately measured. The amplitude of the photoinduced changes of absorption are similar to those induced by chemical action. In the case of Porphyridium, an apparent increase of the extinction power of P700 at ?196°C is observed. This fact seems to be due to a diminution of the bandwith of the neighbouring pigments. Irradiation with red light (685 nm), of a relatively high intensity (10?2 W × cm?2), in the presence of oxygen at ?196°C, induces a slight shift (0.5 nm) of the red absorption band maximum towards longer wavelengths. This change is similar to the one promoted by ferricyanide in the dark. The origin and the functional significance of the phenomenon is discussed.  相似文献   

15.
The influence of progesterone and four other steroids on the intrinsic fluorescence of progesterone-binding globulin was investigated. The corresponding effect of progesterone on α1-acid glycoprotein was also studied. The intrinsic fluorescence of the progesterone-binding globulin and of α1-acid glycoprotein was quenched by about 60 and 17%, respectively, upon forming stoichiometric complexes with progesterone. Graphical analysis of fluorescence quenching titrations with progesterone gave affinity constants at 23 °C of 2 × 109m?1 for progesterone-binding globulin and 1 × 106m?1 for α1-acid glycoprotein. With progesterone-binding globulin, affinity constants of 1 × 109m?1 were determined for desoxycorticosterone, 1 × 108m?1 for testosterone, and 2 × 106m?1 for cortisol. The fluorescence quenching of PBG by 5-pregnen-3β-ol-20-one, 5α-pregnanedione, and 5β-pregnanedione, steroids lacking the Δ4-3-keto grouping, was too small to be evaluated; however, binding of the pregnanediones to progesterone-binding globulins was demonstrated when the progesterone-progesterone-binding globulin complex was “unquenched” as a result of competitive displacement of progesterone by addition of the pregnanediones. The quenching phenomenon is assumed to be mainly due to radiationless transfer from protein to the near uv (n → π1) absorption band of steroids containing the Δ4-3-keto chromophore.  相似文献   

16.
Based on Hamid model of 11Å tobermorite, amorphous calcium silicates hydrates (or C-S-H) structures (Ca4Si6O14(OH)4?2H2O as the C-S-H(I) and (CaO)1.67(SiO2)(H2O)1.75 as the C-S-H(II)) with the Ca/Si ratio of 0.67 and 1.7 are concerned. Then, as the representative ‘globule’ C-S-H, two amorphous C-S-H structures with the size of 5.352 × 4.434 × 4.556 nm3 during the stretch process are simulated at a certain strain rate of 10?3 ps?1 by LAMMPS program for molecular dynamics simulation, using ClayFF force field. The tensile stress–strain curves are obtained and analysed. Besides, elastic modulus of the ‘globule’ C-S-H is calculated to assess the elastic modulus of C-S-H phases (the low-density C-S-H – LD C-S-H – and the high-density C-S-H – HD C-S-H), where the porosity is a critical factor for explaining the relationship between ‘globule’ C-S-H at nanoscale and C-S-H phases at microscale. Results show that: (1) The C-S-H(I) structure has transformed from crystalline to amorphous during the annealing process, Young’s moduli in x, y and z directions are almost the same. Besides, the extent of aggregation and aggregation path for water molecules in the structure is different in three directions. (2) Young’s modulus of both amorphous C-S-H(I) and C-S-H(II) structures with a size of about 5 nm under strain rate of 10?3 ps?1 at 300 K in three directions is averaged to be equal, of which C-S-H(II) structure is about 60.95 GPa thus can be seen as the elastic modulus of the ‘globule’ C-S-H. (3) Based on the ‘globule’ C-S-H, the LD C-S-H and HD C-S-H can be assessed by using the Self-Consistent Scheme (separately 18.11 and 31.45 GPa) and using the Mori–Tanaka scheme (29.78 and 37.71 GPa), which are close to the nanoindentation experiments by Constantinides et al. (21.7 and 29.4 GPa).  相似文献   

17.
The mutagenicity and DNA-binding affinity of members of a series of acridine-substituted derivatives of 4′-(9-acridinylamino)methanesulphonanilide (AMSA) have been compared. The series includes compounds ranging from highly active to inactive in the L1210 murine leukaemia. Binding to DNA was measured by an ethidium displacement technique, with a correction being made for acridine-induced quenching of ethidium. Mutagenicity was assessed by measuring the reversion frequencies of the frameshift tester strain Salmonella typhimurium TA1537 in liquid culture. The results indicate that maximum mutagenicity is found in a “window” of DNA-binding affinities between 106 and 5 × 106 M?1 (determined at 0.01 ionic strength). Compounds with binding affinities below 106 M?1 generally lacked both antitumour and mutagenic activity, whereas those with affinities above 5 × 106 M?1 were active against L1210 leukaemia but virtually inactive in inducing frameshift mutations.  相似文献   

18.
The physical properties of single, 5–8-μm diameter, water-swollen elastin fibers have been investigated on a microtest apparatus attached to a polarizing microscope. Analysis of the mechanical and optical properties at extensions below 100% indicate that the elastic modulus (G) has a value of 4.1 × 105 N m?2, the average molecular weight of chains between crosslinks is in the range of 6000–7100, and the stress optical coefficient (C′) is 1 × 10?9 m2 N?1 at 24°C. Analysis of the temperature dependence of the stress optical coefficient indicates that the polarizability of the random link decreases with increasing temperature, with an apparent activation energy for this process of the order of 1.6 kcal/mol. Analysis of the non-Gaussian mechanical and optical properties at extensions above about 100% suggest that the chains between crosslinks contain approximately 10 “effective” random links, with each link consisting of 7–8 amino acid residues. These parameters for the random chains in the elastin network have been used to predict the dimensions of other random proteins. The close correlation of these predictions with published values for the dimensions of a series of proteins in solution in 6M guanidinium hydrochloride provides an independent test of the appropriateness of our analysis.  相似文献   

19.
Li metal anodes are going through a great revival but they still encounter grand challenges. One often neglected issue is that most reported Li metal anodes are only cyclable under relatively low current density (<5 mA cm?2) and small areal capacity (<5 mAh cm?2), which essentially limits their high‐power applications and results in ineffective Li utilization (<1%). Herein, it is reported that surface alloyed Li metal anodes can enable reversible cycling with ultrafast rate and ultralarge areal capacity. Low‐cost Si wafers are used and are chemically etched down to 20–30 µm membranes. Simply laminating a Si membrane onto Li foil results in the formation of LixSi alloy film fused onto Li metal with mechanical robustness and high Li‐ion conductivity. Symmetric cell measurements show that the surface alloyed Li anode has excellent cycling stability, even under high current density up to 25 mA cm?2 and unprecedented areal capacity up to 100 mAh cm?2. Furthermore, the surface alloyed Li anode is paired with amorphous MoS3 cathode and achieves remarkable full‐cell performance.  相似文献   

20.
Effects of low (from 4 × 10?12 to 2 × 10?7 M) doses of the organophosphorus plant growth regulator Melaphen on structural characteristics of plant and animal cellular membranes were compared with special reference to changes in the microviscosity of free membrane lipid bilayers and annular lipids bound to protein clusters. It was found that effective concentrations of Melaphen were not only different for animal and plant membranes, but also discrete and equal to 2 × 10?7 or 4 × 10?12 M depending on the membrane origin and the nature of membrane lipid components. In parallel experiments, effects of Melaphen on the rate of lipid peroxidation (LPO) in biological membranes were studied under conditions of external cold stress. The intensity of LPO was decreased at all Melaphen concentrations able to modulate the microviscosities of free and annular membrane lipids. It is concluded that effects of low and ultra-low Melaphen concentrations on structural and functional states of biological membranes of plant and animal origin are mediated by its interaction with signaling receptors of cellular membranes and cell organelles of both plant and animal origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号