共查询到20条相似文献,搜索用时 0 毫秒
1.
Glycation has been implicated in the endothelial dysfunction that contributes to both diabetes- and aging-associated vascular complications. The aim of the present study was to determine whether Amadori-glycated phosphatidylethanolamine (Amadori-PE), a lipid-linked glycation compound that is formed at an increased rate in hyperglycemic states, affected proliferation, migration and tube formation of cultured human umbilical vein endothelial cells (HUVEC). Amadori-PE at a low concentration of less than 5 microM significantly enhanced these three factors involved in angiogenesis. Furthermore, stimulation of HUVEC with Amadori-PE resulted in secretion of matrix metalloproteinase 2 (MMP-2), a pivotal enzyme in the initial step of angiogenesis. Our results demonstrated for the first time that Amadori-PE may be an important compound that promotes vascular disease as a result of its angiogenic activity on endothelial cells. We also demonstrated that MMP-2 is a primary mediator of Amadori-PE-driven angiogenesis. 相似文献
2.
Endo A Nagashima K Kurose H Mochizuki S Matsuda M Mochizuki N 《The Journal of biological chemistry》2002,277(26):23747-23754
Sphingosine 1-phosphate (S1P), a ligand for endothelial differentiation gene family proteins, is one of the most potent signal mediators released from activated platelets. Here, we report that S1P induces membrane ruffling of human umbilical vein endothelial cells (HUVECs) via the vascular endothelial growth factor receptor (VEGFR), Src family tyrosine kinase(s), and the CrkII adaptor protein. S1P induced prominent phosphorylation of CrkII in HUVECs, indicating that CrkII was involved in the S1P-induced signaling pathway. S1P-induced CrkII phosphorylation was blocked by pertussis toxin and overexpression of the carboxyl terminus of beta-adrenergic receptor kinase, indicating that the betagamma subunit of G(i) was required for the phosphorylation. Notably, the S1P-induced CrkII phosphorylation was also abolished by inhibitors of VEGFR or Src family tyrosine kinases. By using Picchu, a real time monitoring protein for CrkII phosphorylation, we found that S1P induced rapid CrkII phosphorylation at membrane ruffles. Finally, we observed that expression of a dominant negative mutant of CrkII inhibited the S1P-induced membrane ruffling and cell migration. These results delineated a novel S1P signaling pathway that involves sequential activation of G(i)-coupled receptor(s), VEGFR, Src family tyrosine kinase(s), and the CrkII adaptor protein, and which is responsible for both the induction of membrane ruffling and the increase in cell motility. 相似文献
3.
Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production 总被引:12,自引:0,他引:12
Kwon YG Min JK Kim KM Lee DJ Billiar TR Kim YM 《The Journal of biological chemistry》2001,276(14):10627-10633
Sphingosine 1-phosphate (S1P) can prevent endothelial cell apoptosis. We investigated the molecular mechanisms and signaling pathways by which S1P protects endothelial cells from serum deprivation-induced apoptosis. We show here that human umbilical vein endothelial cells (HUVECs) undergo apoptosis associated with increased DEVDase activity, caspase-3 activation, cytochrome c release, and DNA fragmentation after 24 h of serum deprivation. These apoptotic markers were suppressed by the addition of S1P, the NO donor S-nitroso-N-acetylpenicillamine (100 micrometer), or caspase-3 inhibitor z-VAD-fmk. The protective effects of S1P were reversed by the nitric-oxide synthase (NOS) inhibitor N-monomethyl-l-arginine, but not by the soluble guanylyl cyclase inhibitor 1H-(1,2,4)oxadiazolo[4,3-a]-quanoxaline-1-one, suggesting that NO, but not cGMP, is responsible for S1P protection from apoptosis. Furthermore, S1P increased NO production by enhancing Ca(2+)-sensitive NOS activity without changes in the eNOS protein level. S1P-mediated cell survival and NO production were suppressed significantly by pretreatment with antisense oligonucleotide of EDG-1 and partially by EDG-3 antisense. S1P-mediated NO production was suppressed by the addition of pertussis toxin, an inhibitor of G(i) proteins, the specific inhibitor of phospholipase C (PLC), and the Ca(2+) chelator BAPTA-AM. These findings indicate that S1P protects HUVECs from apoptosis through the activation of eNOS activity mainly through an EDG-1 and -3/G(i)/PLC/Ca(2+) signaling pathway. 相似文献
4.
Joo-Won Park Won-Ho Kim So-Hee ShinJi Yeon Kim Mi Ran YunKeon Jae Park Hyun-Young Park 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(5):763-771
The biologically active factors known as adipocytokines are secreted primarily by adipose tissues and can act as modulators of angiogenesis. Visfatin, an adipocytokine that has recently been reported to have angiogenic properties, is upregulated in diabetes, cancer, and inflammatory diseases. Because maintenance of an angiogenic balance is critically important in the management of these diseases, understanding the molecular mechanism by which visfatin promotes angiogenesis is very important. In this report, we describe our findings demonstrating that visfatin stimulates the mammalian target of the rapamycin (mTOR) pathway, which plays important roles in angiogenesis. Visfatin induced the expression of hypoxia-inducible factor 1α (HIF1α) and vascular endothelial growth factor (VEGF) in human endothelial cells. Inhibition of the mTOR pathway by rapamycin eliminated the angiogenic and proliferative effects of visfatin. The visfatin-induced increase in VEGF expression was also eliminated by RNA interference-mediated knockdown of the 70-kDa ribosomal protein S6 kinase (p70S6K), a downstream target of mTOR. Visfatin inactivated glycogen synthase kinase 3β (GSK3β) by phosphorylating it at Ser-9, leading to the nuclear translocation of β-catenin. Both rapamycin co-treatment and p70S6K knockdown inhibited visfatin-induced GSK3β phosphorylation at Ser-9 and nuclear translocation of β-catenin. Taken together, these results indicate that mTOR signaling is involved in visfatin-induced angiogenesis, and that this signaling leads to visfatin-induced VEGF expression and nuclear translocation of β-catenin. 相似文献
5.
6.
T Kimura K Sato A Kuwabara H Tomura M Ishiwara I Kobayashi M Ui F Okajima 《The Journal of biological chemistry》2001,276(34):31780-31785
Sphingosine 1-phosphate (S1P), a novel lipid mediator, is concentrated in the fraction of lipoproteins that include high density lipoprotein (HDL) and low density lipoprotein (LDL) in human plasma. Here, we show that oxidation of LDL resulted in a marked reduction in the S1P level in association with a marked accumulation of lysophosphatidylcholine (LPC). We therefore investigated the role of the lipoprotein-associated lipids especially S1P in the lipoprotein-induced cytoprotective or cytotoxic actions in human umbilical vein endothelial cells. The viability of the cells gradually decreased in the absence of serum or growth factors in the culture medium. The addition of oxidized LDL (ox-LDL) accelerated the decrease in the cell viability. LPC and 7-ketocholesterol mimicked ox-LDL actions. On the other hand, HDL and LDL almost completely reversed the serum deprivation- or ox-LDL-induced cytotoxicity. Exogenous S1P mimicked cytoprotective actions. Moreover, the S1P-rich fraction and chromatographically purified S1P from HDL exerted cytoprotective actions, but the rest of the fractions did not. The cytoprotective actions of HDL and S1P were associated with extracellular signal-regulated kinase (ERK) activation and were almost completely inhibited by pertussis toxin and PD98059, an ERK kinase inhibitor. The HDL-induced action was specifically desensitized in the S1P-pretreated cells. Taken together, these results indicate that the lipoprotein-associated S1P and the lipid receptor-mediated signal pathways may be responsible for the lipoprotein-induced cytoprotective actions. Furthermore, the decrease in the S1P content, in addition to the accumulation of cytotoxic substances such as LPC, may be important for the acquisition of the cytotoxic property to ox-LDL. 相似文献
7.
目的观察低氧条件下HIF-1α/VEGF/Notch信号通路在人脐静脉内皮细胞(HUVEC)血管生成中的作用。
方法将HUVEC进行常氧和低氧[二氯化钴(CoCl2),200 μmol/L]诱导,再将常氧和低氧处理的HUVEC应用Notch1信号通路的抑制剂DAPT (30 μmol/L,24 h)和激活剂JAG-1 (30 μmol/L,24 h)干预。通过体外小管形成实验观察低氧对HUVEC血管生成能力的影响。应用RT-PCR和Western blot检测HUVEC中低氧诱导因子-1α (HIF-1α)、血管内皮生长因子(VEGF)、基质金属蛋白酶-9 (MMP-9)和Notch1信号分子(Notch1、Dell4和JAG-1)的mRNA和蛋白表达。通过Transwell迁移实验和伤口愈合实验观察低氧、DAPT、JAG-1对HUVEC迁移能力的影响。应用MTT法检测低氧及Notch1对HUVEC增殖的影响。两组间比较采用t检验,采用析因设计方差分析低氧和DAPT以及低氧和JAG-1对HUVEC迁移能力、距离、小管形成能力和细胞增殖的交互作用。
结果与常氧组比较,低氧组小管总长[(8.18±0.62)mm比(15.43±1.32)mm]增高,差异具有统计学意义(P < 0.05)。与常氧组比较,低氧组的HIF-1α、VEGF、MMP-9、Notch1、Dell4和JAG-1的mRNA相对表达量和蛋白相对表达量(1.01±0.03比4.43±0.35,1.02±0.03比3.55±0.28,0.98±0.04比3.24±0.25,1.01±0.03比3.22±0.25,0.99±0.02比2.89±0.22,1.02±0.04比2.43±0.19,0.98±0.01比3.13±0.24,0.98±0.02比2.67±0.21,0.97±0.03比2.45±0.19,1.01±0.03比2.44±0.19,1.00±0.04比2.30±0.18,1.03±0.05比2.27±0.18)均升高,差异有统计学意义(P均< 0.05)。Transwell迁移实验和伤口愈合实验显示,低氧条件下,DAPT干预使HUVEC的迁移能力降低,JAG-1干预使HUVEC的迁移能力升高(P均< 0.05)。小管形成和MTT法测定显示,低氧条件下,DAPT干预使HUVEC的小管形成能力和细胞增殖能力降低,JAG-1干预使HUVEC的小管形成能力和细胞增殖能力升高(P均< 0.05)。析因设计的方差分析结果显示,低氧和JAG-1对迁移细胞数、小管形成和细胞增殖能力交互作用具有协同作用(P < 0.05)。
结论低氧可通过激活HIF-1α/VEGF/Notch1信号通路提高HUVEC的血管生成能力、迁移能力和细胞增殖能力。 相似文献
8.
Sphingosine 1-phosphate (S1P) is a multifunctional phospholipid which acts through a specific family of G protein-coupled receptors. Platelet/endothelial cell adhesion molecule-1 (PECAM-1) form trans-homophilic binding at lateral cell border. Upon stimulation, its cytoplasmic tyrosine residues could be phosphorylated and interact with various downstream signaling molecules. In this study, we demonstrated that S1P induced PECAM-1 tyrosine phosphorylation in human umbilical cord vein cells (HUVECs). By pharmacological inhibitors, it was suggested that G(i) and Src family kinases were involved in PECAM-1 phosphorylation. Moreover, cSrc and Fyn siRNA significantly suppressed S1P-induced PECAM-1 phosphorylation. These results suggested that S1P-induced PECAM-1 phosphorylation through G(i) and subsequent cSrc and Fyn. Our findings provide further understanding of S1P and PECAM-1 signaling as well as their functions in endothelial cells. 相似文献
9.
10.
A Bikfalvi E M Cramer D Tenza G Tobelem 《Biology of the cell / under the auspices of the European Cell Biology Organization》1991,72(3):275-278
Different angiogenic assays in vitro have helped to define various events underlying angiogenesis. In this report we have compared the phenotypic modifications of human umbilical vein endothelial cells (HUVE cells) and human dermal fibroblasts using Matrigel and collagen gels. Both HUVE cells and human dermal fibroblasts form a network of anastomosing cords that apparently resemble blood capillaries when grown on Matrigel. The whole network was formed by several cellular aggregates joined to each other by cellular cords. Lumen formation was not observed in this angiogenic system. In opposite, considerable differences between HUVE cells and human dermal fibroblasts were observed in the three-dimensional angiogenic assay on collagen gels described by Montesano et al [14]. These results indicate that data obtained with angiogenic systems using Matrigel must be interpreted with caution and that the assay described by Montesano et al [14], is more reliable to describe angiogenesis. 相似文献
11.
Zhuge X Murayama T Arai H Yamauchi R Tanaka M Shimaoka T Yonehara S Kume N Yokode M Kita T 《Biochemical and biophysical research communications》2005,331(4):1295-1300
CXCL16 is a unique chemokine with characteristics as a receptor for phosphatidylserine and oxidized low density lipoproteins in macrophages, and is involved in the accumulation of cellular cholesterol during atherosclerotic lesion development. In this study, we report a new function of CXCL16 as a novel angiogenic factor in human umbilical vein endothelial cells (HUVEC). CXCL16 stimulated proliferation and chemotaxis of HUVEC in a dose-dependent manner, reaching a maximum at 1 nM. CXCL16 also significantly induced tube formation of HUVEC on Matrigel. Further, exposure of HUVEC to CXCL16 led to a time- and dose-dependent activation of mitogen-activated protein kinase (ERK1/2), which was completely inhibited by a mitogen-activated protein kinase kinase inhibitor, PD98059. Proliferation and tube formation in response to CXCL16 were also blocked by the pretreatment with PD98059, but not CXCL16-induced chemotaxis. Thus, our data indicate that CXCL16 may act as a novel angiogenic factor for HUVEC and that ERK is involved as an important signaling molecule to mediate its angiogenic effects. 相似文献
12.
Ning Meng LingLing Wu JianGang Gao Jing Zhao Le Su Hua Su ShangLi Zhang JunYing Miao 《Journal of cellular physiology》2010,225(1):174-179
Lipopolysaccharide (LPS), as an important proinflammatory agent, targets the endothelium. However, almost all in vitro experiments of the effect of LPS on vascular endothelial cells (VECs) were performed under an artificially decreased concentration of serum that was not enough to maintain the cell growth for a long time. The mechanism underlying LPS action on VECs cultured in a nutrient‐rich condition is not clear. To address this question and mimic the in vivo condition, we investigated the effect of LPS on VEC autophagy, which is involved in numerous physiological processes. The effect of LPS on microtubule‐associated protein 1 light chain 3 (LC3) distribution, LC3‐II accumulation and p62 degradation showed that LPS effectively induced autophagy in VECs cultured in the presence of 20% serum. To understand the mechanism by which LPS triggers the cell autophagy, we first investigated the effects of LPS on the expression of BIRC2 (cIAP1), a well‐known apoptosis inhibitor, and on the kinase activity of mammalian target of rapamycin (mTOR) and nuclear translocation of p53. LPS increased BIRC2 expression in a dose‐ and time‐dependent manner and elevated the intranuclear level of p53 but had no effect on the mTOR pathway when it triggered VEC autophagy. Furthermore, knockdown of BIRC2 by RNA interference inhibited the autophagy and the translocation of p53 to nuclei induced by LPS. These data suggest a novel role for BIRC2 in LPS‐induced autophagy in VECs. J. Cell. Physiol. 225: 174–179, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
13.
14.
Zhong-Xiu-Zi Gao Hai-Xia Li Yan-Hong Lv Jin-Hua Zheng 《Biochemical and biophysical research communications》2010,400(1):151-156
Angiogenesis is critical to a wide range of physiological and pathological processes. Scutellarin, a major flavonoid of a Chinese herbal medicine Erigeron breviscapus (Vant.) Hand. Mazz. has been shown to offer beneficial effects on cardiovascular and cerebrovascular functions. However, scutellarin’s effects on angiogenesis and underlying mechanisms are not fully elucidated. Here, we studied angiogenic effects of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. Scutellarin was found by MTT assay to induce proliferation of HUVECs. In scutellarin-treated HUVECs, a dramatic increase in migration was measured by wound healing assay; Transwell chamber assay found significantly more invading cells in scutellarin-treated groups. Scutellarin also promoted capillary-like tube formation in HUVECs on Matrigel, and significantly upregulated platelet endothelial cell adhesion molecule-1 at both mRNA and protein levels. Scutellarin’s angiogenic mechanism was investigated in vitro by measuring expression of angiogenic factors associated with cell migration and invasion. Scutellarin strongly induced MMP-2 activation and mRNA expression in cultured HUVECs in a concentration-dependent manner. Taken together, these results suggest that scutellarin promotes angiogenesis and may form a basis for angiogenic therapy. 相似文献
15.
Production of latent collagenase by human umbilical vein endothelial cells in response to angiogenic preparations 总被引:1,自引:0,他引:1
Three preparations known to be angiogenic in vivo and which stimulate production of latent collagenase by cultured bovine capillary endothelial (BCE) cells were tested for their ability to stimulate production of latent collagenase by cultured human umbilical vein endothelial (HUVE) cells. Bovine retinal extract and murine adipocyte-conditioned medium had no effect on production of latent collagenase by HUVE cells at concentrations that were effective in stimulating production of latent collagenase by BCE cells. However, with higher concentrations of bovine retinal extract, production of latent collagenase by HUVE cells was stimulated. Human hepatoma cell sonicate stimulated production of latent collagenase by HUVE cells in a dose-dependent manner. The concentration of human hepatoma cell sonicate which stimulated production of latent collagenase by HUVE cells was lower than the concentration that was effective for the stimulation of production of latent collagenase by BCE cells. Plasminogen activator production by HUVE cells was unaffected by human hepatoma cell sonicate. Varying the concentration of serum in HUVE cultures did not affect the stimulation of latent collagenase production by human hepatoma cell sonicate, suggesting that serum components neither block nor stimulate the action of the collagenase-inducing factor. Although human hepatoma cell sonicate is reported to stimulate endothelial cell multiplication, purified and partially purified endothelial cell mitogens had no effect on production of latent collagenase. Thus, at least two preparations which contain angiogenic activity will stimulate production of latent collagenase by HUVE cells. 相似文献
16.
Vasta V Meacci E Catarzi S Donati C Farnararo M Bruni P 《Biochimica et biophysica acta》2000,1483(1):154-160
In the present paper, the effect of sphingosine 1-phosphate (Sph-1-P) on arachidonic acid mobilization in A549 human lung adenocarcinoma cells was investigated. Sph-1-P provoked a rapid and relevant release of arachidonic acid which was similar to that elicited by bradykinin, well-known pro-inflammatory agonist. The Sph-1-P-induced release of arachidonic acid involved Ca(2+)-independent phospholipase A(2) (iPLA2) activity, as suggested by the dose-dependent inhibition exerted by the rather specific inhibitor bromoenol lactone. The Sph-1-P-induced release of arachidonic acid was pertussis toxin-sensitive, pointing at a receptor-mediated mechanism, which involves heterotrimeric Gi proteins. The action of Sph-1-P was totally dependent on protein kinase C (PKC) catalytic activity and seemed to involve agonist-stimulated phospholipase D (PLD) activity. This study represents the first evidence for Sph-1-P-induced release of arachidonic acid which occurs through a specific signaling pathway involving Gi protein-coupled receptor(s), PKC, PLD and iPLA2 activities. 相似文献
17.
18.
Misonou Y Takahashi M Park YS Asahi M Miyamoto Y Sakiyama H Cheng X Taniguchi N 《Free radical research》2005,39(5):507-512
Acrolein is a highly electrophilic alpha,beta-unsaturated aldehydes to which humans are exposed in a variety of environment situations and is also a product of lipid peroxidation. Increased levels of unsaturated aldehydes play an important role in the pathogenesis of a number of human diseases such as Alzheimer's disease, atherosclerosis and diabetes. A number of studies have reported that acrolein evokes downstream signaling via an elevation in cellular oxidative stress. Here, we report that low concentrations of acrolein induce Hsp72 in human umbilical vein endothelial cells (HUVEC) and that both the PKCdelta/JNK pathway and calcium pathway were involved in the induction. The findings confirm that the production of reactive oxygen species (ROS) is not directly involved in the pathway. The induction of Hsp72 was not observed in other cells such as smooth muscle cells (SMC) or COS-1 cells. The results suggest that HUVEC have a unique defense system against cell damage by acrolein in which Hsp72 is induced via activation of both the PKCd/JNK and the calcium pathway. 相似文献
19.
Sphingosine 1-phosphate (S1P) is known to induce reorganization of the actin cytoskeleton through activation of the GTPase Rho. We have investigated the dynamic behavior of Rho/Rho kinase-regulated myosin light chain (MLC) phosphatase activity and MLC phosphorylation in Human Umbilical Vein Endothelial Cells (HUVEC) stimulated with S1P. Immediately (30-60 s) after S1P stimulation, MLC phosphatase activity dropped and MLC phosphorylation increased in a Rho/Rho kinase-dependent manner. Shortly thereafter (2 min), MLC phosphatase increased above baseline and MLC phosphorylation correspondingly decreased to near control values. At this time point, formation of actin ruffles and Rac activity assays indicated activation of Rac. Finally, between 5 and 15 min, MLC phosphatase dropped to a plateau below baseline. In parallel, MLC phosphorylation became constantly elevated above control values. These findings indicate that S1P is able to induce dynamic cycles of MLC phosphatase deactivation and activation. This novel feature of S1P could contribute to its chemotactic and angiogenic activity. 相似文献
20.
Angiogenesis, the formation of new blood vessels from preexisting capillaries, is essential for tumor progression and metastasis. During tumor neovascularization, vascular endothelial growth factor and ephrin (Eph) families emerge as critical mediators of angiogenesis. The green tea catechin epigallocatechin gallate (EGCG), a tyrosine kinase inhibitor, has been demonstrated in previous studies to be an effective antiangiogenesis agent. However, the inhibitory effect of green tea catechins on ephrin-A1-mediated tumor angiogenesis has not been demonstrated yet. Thus, in this study, we investigated the molecular mechanism of ephrin-A1-mediated cell migration and angiogenesis, as well as the inhibitory effects of EGCG. Here we show that ephrin-A1 mediates endothelial cell migration and regulates vascular remodeling in tumor neovascularization in vitro. We also demonstrated that ephrin-A1-mediated cell migration required the activation of extracellular-regulated kinase (ERK-1/2) but not of phosphatidylinositol-3-kinase. The green tea catechin EGCG inhibited ephrin-A1-mediated endothelial cell migration, as well as tumor angiogenesis, in a dose-dependent manner. Furthermore, EGCG inhibited the ephrin-A1-mediated phosphorylation of EphA2 and ERK-1/2. Taken together, these data indicated that activation of ERK-1/2 plays an essential role in ephrin-A1-mediated cell migration. EGCG inhibited ephrin-A1-mediated endothelial migration and angiogenesis. It suggests a novel antiangiogenesis application of EGCG in cancer chemoprevention. 相似文献