首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract In situ concentrations of hydrogen and other metabolites involved in H2-consuming and H2-producing reactions were measured in anoxic methanogenic lake sediments, sewage sludge and fetid liquid of cottonwood. The data were used to calculate the Gibbs free energies of the metabolic reactions under the conditions prevailing in situ. The thermodynamics of most of the reactions studied were exergonic with Gibbs free energies being more negative for H2-dependent sulfate reduction methanogenesis acetogenesis and for H2-producing lactate fermentation ethanol fermentation. Butyrate and propionate fermentation, on the other hand, were endergonic under in situ conditions. This observation is interpreted by suggesting that butyrate and propionate is degraded within microbial clusters which shield the fermentating bacteria from the outside H2 (and acetate) pool.  相似文献   

2.
Although obligate syntrophic reactions cannot proceed without hydrogenotrophs, it has been unclear from the literature whether potential improvements are achievable with higher concentrations of hydrogenotrophs. In this study, the relative importance of formate-/H(2)-utilizing and acetate-utilizing trophic groups in the anaerobic degradation of butyrate and propionate was assessed by adding various proportions of these enriched cultures to a mixed anaerobic seed inoculum. The improvement resulting from the additional acetate-utilizing cultures was much greater than with formate/H(2) utilizers. Furthermore, formate/H(2) utilizers did not improve propionate utilization significantly, suggesting the importance of optimum utilization of hydrogenotrophic capacity. During most of the volatile fatty acid (VFA) degradation period, the system responded with characteristic hydrogen levels to maintain the Gibbs free energy of oxidation approximately constant for both butyrate (-6 kJ) and propionate (-14 kJ). These free-energy values were independent of methanogenic activity, as well as the volume of the seed inoculum and the VFA concentrations present. By comparing the experimental results with kinetic and mass transfer models, it was postulated that the diffusional transfer of reducing equivalents was the major limiting factor for efficient VFA degradation. Therefore, for optimum utilization of the hydrogenotrophs, low acetate concentrations are vital to enable the system to respond with higher formate/H(2) levels, thus leading to improved transfer of reducing equivalents. Due to the small number of propionate utilizers (and hence their limited surface area) and low bulk liquid concentrations, the additional formate/H(2) utilizers were of minimal use for improving the degradation rate further. The butyrate degradation rates strongly correlated with the cumulative activity of hydrogenotrophs and acetotrophs over the experimental range studied, indicating the need to model obligate syntrophic reactions as a dependent function of methanogenic activity.  相似文献   

3.
Propionate is an important intermediate in the anaerobic degradation of complex organic matter to methane and carbon dioxide. The metabolism of propionate-forming and propionate-degrading bacteria is reviewed here. Propionate is formed during fermentation of polysaccharides, proteins and fats. The study of the fate of 13C-labelled compounds by nuclear magnetic resonance (NMR) spectroscopy has contributed together with other techniques to the present knowledge of the metabolic routes which lead to propionate formation from these substrates. Since propionate oxidation under methanogenic conditions is thermodynamically difficult, propionate often accumulates when the rates of its formation and degradation are unbalanced. Bacteria which are able to degrade propionate to the methanogenic substrates acetate and hydrogen can only perform this reaction when the methanogens consume acetate and hydrogen efficiently. As a consequence, propionate can only be degraded by obligatory syntrophic consortia of microorganisms. NMR techniques were used to study the degradation of propionate by defined and less defined cultures of these syntrophic consortia. Different types of side-reactions were reported, like the reductive carboxylation to butyrate and the reductive acetylation to higher fatty acids.  相似文献   

4.
Inefficient syntrophic propionate degradation causes severe operating disturbances and reduces biogas productivity in many high-ammonia anaerobic digesters, but propionate-degrading microorganisms in these systems remain unknown. Here, we identified candidate ammonia-tolerant syntrophic propionate-oxidising bacteria using propionate enrichment at high ammonia levels (0.7–0.8 g NH3 L−1) in continuously-fed reactors. We reconstructed 30 high-quality metagenome-assembled genomes (MAGs) from the propionate-fed reactors, which revealed two novel species from the families Peptococcaceae and Desulfobulbaceae as syntrophic propionate-oxidising candidates. Both MAGs possess genomic potential for the propionate oxidation and electron transfer required for syntrophic energy conservation and, similar to ammonia-tolerant acetate degrading syntrophs, both MAGs contain genes predicted to link to ammonia and pH tolerance. Based on relative abundance, a Peptococcaceae sp. appeared to be the main propionate degrader and has been given the provisional name “Candidatus Syntrophopropionicum ammoniitolerans”. This bacterium was also found in high-ammonia biogas digesters, using quantitative PCR. Acetate was degraded by syntrophic acetate-oxidising bacteria and the hydrogenotrophic methanogenic community consisted of Methanoculleus bourgensis and a yet to be characterised Methanoculleus sp. This work provides knowledge of cooperating syntrophic species in high-ammonia systems and reveals that ammonia-tolerant syntrophic propionate-degrading populations share common features, but diverge genomically and taxonomically from known species.  相似文献   

5.
Although obligate syntrophic reactions cannot proceed without hydrogenotrophs, it has been unclear from the literature whether potential improvements are achievable with higher concentrations of hydrogenotrophs. In this study, the relative importance of formate-/H2-utilizing and acetate-utilizing trophic groups in the anaerobic degradation of butyrate and propionate was assessed by adding various proportions of these enriched cultures to a mixed anaerobic seed inoculum. The improvement resulting from the additional acetate-utilizing cultures was much greater than with formate/H2 utilizers. Furthermore, formate/H2 utilizers did not improve propionate utilization significantly, suggesting the importance of optimum utilization of hydrogenotrophic capacity. During most of the volatile fatty acid (VFA) degradation period, the system responded with characteristic hydrogen levels to maintain the Gibbs free energy of oxidation approximately constant for both butyrate (−6 kJ) and propionate (−14 kJ). These free-energy values were independent of methanogenic activity, as well as the volume of the seed inoculum and the VFA concentrations present. By comparing the experimental results with kinetic and mass transfer models, it was postulated that the diffusional transfer of reducing equivalents was the major limiting factor for efficient VFA degradation. Therefore, for optimum utilization of the hydrogenotrophs, low acetate concentrations are vital to enable the system to respond with higher formate/H2 levels, thus leading to improved transfer of reducing equivalents. Due to the small number of propionate utilizers (and hence their limited surface area) and low bulk liquid concentrations, the additional formate/H2 utilizers were of minimal use for improving the degradation rate further. The butyrate degradation rates strongly correlated with the cumulative activity of hydrogenotrophs and acetotrophs over the experimental range studied, indicating the need to model obligate syntrophic reactions as a dependent function of methanogenic activity.  相似文献   

6.
The effects of acetate, propionate, and butyrate on the anaerobic thermophilic conversion of propionate by methanogenic sludge and by enriched propionate-oxidizing bacteria in syntrophy with Methanobacterium thermoautotrophicum delta H were studied. The methanogenic sludge was cultivated in an upflow anaerobic sludge bed (UASB) reactor fed with propionate (35 mM) as the sole substrate for a period of 80 days. Propionate degradation was shown to be severely inhibited by the addition of 50 mM acetate to the influent of the UASB reactor. The inhibitory effect remained even when the acetate concentration in the effluent was below the level of detection. Recovery of propionate oxidation occurred only when acetate was omitted from the influent medium. Propionate degradation by the methanogenic sludge in the UASB reactor was not affected by the addition of an equimolar concentration (35 mM) of butyrate to the influent. However, butyrate had a strong inhibitory effect on the growth of the propionate-oxidizing enrichment culture. In that case, the conversion of propionate was almost completely inhibited at a butyrate concentration of 10 mM. However, addition of a butyrate-oxidizing enrichment culture abolished the inhibitory effect, and propionate oxidation was even stimulated. All experiments were conducted at pH 7.0 to 7.7. The thermophilic syntrophic culture showed a sensitivity to acetate and propionate similar to that of mesophilic cultures described in the literature. Additions of butyrate or acetate to the propionate medium had no effect on the hydrogen partial pressure in the biogas of an UASB reactor, nor was the hydrogen partial pressure in propionate-degrading cultures affected by the two acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Metabolic interactions between anaerobic bacteria in methanogenic environments   总被引:29,自引:0,他引:29  
In methanogenic environments organic matter is degraded by associations of fermenting, acetogenic and methanogenic bacteria. Hydrogen and formate consumption, and to some extent also acetate consumption, by methanogens affects the metabolism of the other bacteria. Product formation of fermenting bacteria is shifted to more oxidized products, while acetogenic bacteria are only able to metabolize compounds when methanogens consume hydrogen and formate efficiently. These types of metabolic interaction between anaerobic bacteria is due to the fact that the oxidation of NADH and FADH2 coupled to proton or bicarbonate reduction is thermodynamically only feasible at low hydrogen and formate concentrations. Syntrophic relationships which depend on interspecies hydrogen or formate transfer were described for the degradation of e.g. fatty acids, amino acids and aromatic compounds.  相似文献   

8.
Abstract: Fatty acids are key intermediates in methanogenic degradation of organic matter in sediments as well as in anaerobic reactors. Conversion of butyrate or propionate to acetate, (CO2), and hydrogen is endergonic under standard conditions, and becomes possible only at low hydrogen concentrations (10-4-10-5 bar). A model of energy sharing between fermenting and methanogenic bacteria attributes a maximum amount of about 20 kJ per mol reaction to each partner in this syntrophic cooperation system. This amount corresponds to synthesis of only a fraction (one-third) of an ATP to be synthesized per reaction. Recent studies on the biochemistry of syntrophic fatty acid-oxidizing bacteria have revealed that hydrogen release from butyrate by these bacteria is inhibited by a protonophore or the ATPase inhibitor DCCD ( N , N '-dicyclohexyl carbodiimide), indicating that a reversed electron transport step is involved in butyrate or propionate oxidation. Hydrogenase, butyryl-CoA dehydrogenase, and succinate dehydrogenase acitivities were found to be partially associated with the cytoplasmic membrane fraction. Also glycolic acid is degraded to methane and CO2 by a defined syntrophic coculture. Here the most difficult step for hydrogen release is the glycolate dehydrogenase reaction ( E '0=−92 mV). Glycolate dehydrogenase, hydrogenase, and ATPase were found to be membrane-bound enzymes. Membrane vesicles produced hydrogen from glycolate only in the presence of ATP; protonophores and DCCD inhibited this hydrogen release. This system provides a suitable model to study reversed electron transport in interspecies hydrogen transfer between fermenting and methanogenic bacteria in methanogenic biomass degradation.  相似文献   

9.
The effect of sulfate on the anaerobic breakdown of mixtures of acetate, propionate and butyrate at three different sulfate to fatty acid ratios was studied in upflow anaerobic sludge blanket reactors. Sludge characteristics were followed with time by means of sludge activity tests and by enumeration of the different physiological bacterial groups. At each sulfate concentration acetate was completely converted into methane and CO2, and acetotrophic sulfate-reducing bacteria were not detected. Hydrogenotrophic methanogenic bacteria and hydrogenotrophic sulfate-reducing bacteria were present in high numbers in the sludge of all reactors. However, a complete conversion of H2 by sulfate reducers was found in the reactor operated with excess sulfate. At higher sulfate concentrations, oxidation of propionate by sulfate-reducing bacteria became more important. Only under sulfate-limiting conditions did syntrophic propionate oxidizers out-compete propionate-degrading sulfate reducers. Remarkably, syntrophic butyrate oxidizers were well able to compete with sulfate reducers for the available butyrate, even with an excess of sulfate. Correspondence to: A. Visser  相似文献   

10.
The fermentation kinetics of methane production from whey permeate in a packed bed immobilized cell bioreactor at mesophilic temperatures and pHs around neutral was studied. Propionate and acetate were the only two major organic intermediates found in the methanogenic fermentation of lactose. Based on this finding, a three-step reaction mechanism was proposed: lactose was first degraded to propionate, acetate, CO(2), and H(2) by fermentative bacteria; propionate was then converted to acetate by propionate-degrading bacteria; and finally, CH(4) and CO(2) were produced from acetate, H(2), and CO(2) by methanogenic bacteria. The second reaction step was found to be the rate-limiting step in the overall methanogenic fermentation of lactose. Monod-type mathematical equations were used to model these three step reactions. The kinetic constants in the models were sequentially determined by fitting the mathematical equations with the experimental data on acetate, propionate, and lactose concentrations. A mixed-culture fermentation model was also developed. This model simulates the methanogenic fermentation of whey permeate very well.  相似文献   

11.
In this study we investigated whether a relationship exists between the methanogenic activity and the content of specific methanogenic cofactors of granular sludges cultured on different combinations of volatile fatty acids in upflow anaerobic sludge blanket or fluidized-bed reactors. Significant correlations were measured in both cases between the contents of coenzyme F420−2 or methanopterin and the maximum specific methanogenic activities on propionate, butyrate, and hydrogen, but not acetate. For both sludges the content of sarcinapterin appeared to be correlated with methanogenic activities on propionate, butyrate, and acetate, but not hydrogen. Similar correlations were measured with regard to the total content of coenzyme F420−4 and F420−5 in sludges from fluidized-bed reactors. The results indicate that the contents of specific methanogenic cofactors measured in anaerobic granular sludges can be used to estimate the hydrogenotrophic or acetotrophic methanogenic potential of these sludges.  相似文献   

12.
The coenzyme F(420) content of granular sludge grown on various substrates and substrate combinations was measured, and the potential of the sludge to form methane (maximum specific methane production rate) from hydrogen, formate, acetate, propionate, and ethanol was determined. The F(420) content varied between 55 nmol g of volatile suspended solids (VSS) for sludge grown on acetate and 796 nmol g of VSS for sludge grown on propionate. The best correlation was found between the F(420) content and the potential activity for methane formation from formate; almost no correlation, however, was found with acetate as the test substrate. The ratio between the potential methanogenic activities (qch(4)) of sludges grown on various substrates and their F(420) content was in general highest for formate (48.2 mumol of CH(4) mumol of F(420) min) and lowest for propionate (6.9 mumol of CH(4) mumol of F(420) min) as test substrates. However, acetate-grown granular sludge with acetate as test substrate showed the highest ratio, namely, 229 mumol of CH(4) mumol of F(420) min. The data presented indicate that the F(420) content of methanogenic consortia can be misleading for the assessment of their potential acetoclastic methanogenic activity.  相似文献   

13.
Energetic analysis was applied to reduced product formation following perturbation of ethanol- and propionate-fed methanogenic continuous stirred tank reactors (CSTRs). Formation and dissipation of longer-chained n-carboxylic acids corresponded with the variation in Gibbs free energy change associated with beta-oxidation reactions. Formation appeared to occur from acetate and propionate by reductive back-reactions, made energetically favorable by elevated hydrogen partial pressure (P(H(2) )), and possibly mediated by biosynthetic enzymes. The formed longer-chained acids dissipated when the P(H(2) ) fell and equilibrium shifted to favor beta-oxidations. n-Propanol was found to be produced from propionate in a coupled ethanol oxidation/propionate reduction reaction, mediated by ethanol-oxidizing organisms during high rates of ethanol utilization and elevated P(H(2) ). When P(H(2) ) declined, n-propanol was oxidized back to its precursor propionate. Both reaction energetics and intracellular diffusion of the electron carrier may effect transient mediation of this coupled reaction.  相似文献   

14.
The microbial species composition of methanogenic granules developed on an acetate-propionate-butyrate mixture was characterized. The granules contained high numbers of adhesive methanogens (1012/g dry weight) and butyrate-, isobutyrate-, and propionate-degrading syntrophic acetogens (1011/g dry weight), but low numbers of hydrolytic-fermentative bacteria (109/g dry weight). Prevalent methanogens in the granules included: Methanobacterium formicicum strain T1N and RF, Methanosarcina mazei strain T18, Methanospirillum hungatei strain BD, and a non-filamentous, bamboo-shaped rod species, Methanothrix/Methanosaeta-like strain M7. Prevalent syntrophic acetogens included: a butyrate-degrading Syntrophospora bryantii-like strain BH, a butyrate-isobutyrate degrading non-spore-forming rod, strain IB, a propionate-degrading sporeforming oval-shaped species, strain PT, and a propionate-degrading none-spore-forming sulfate-reducing rod species, strain PW, which was able to grow syntrophically with an H2-utilizing methanogen. Sulfate-reducing bacteria did not play a significant role in the metabolism of H2, formate, acetate and butyrate but they were involved in propionate degradation.Correspondence to: M. K. Jain  相似文献   

15.
High-rate anaerobic treatment of wastewater at low temperatures   总被引:14,自引:0,他引:14  
Anaerobic treatment of a volatile fatty acid (VFA) mixture was investigated under psychrophilic (3 to 8 degrees C) conditions in two laboratory-scale expanded granular sludge bed reactor stages in series. The reactor system was seeded with mesophilic methanogenic granular sludge and fed with a mixture of VFAs. Good removal of fatty acids was achieved in the two-stage system. Relative high levels of propionate were present in the effluent of the first stage, but propionate was efficiently removed in the second stage, where a low hydrogen partial pressure and a low acetate concentration were advantageous for propionate oxidation. The specific VFA-degrading activities of the sludge in each of the modules doubled during system operation for 150 days, indicating a good enrichment of methanogens and proton-reducing acetogenic bacteria at such low temperatures. The specific degradation rates of butyrate, propionate, and the VFA mixture amounted to 0.139, 0.110, and 0.214 g of chemical oxygen demand g of volatile suspended solids-1 day-1, respectively. The biomass which was obtained after 1.5 years still had a temperature optimum of between 30 and 40 degrees C.  相似文献   

16.
Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is assumed to be a syntrophic process, in which methanotrophic archaea produce an interspecies electron carrier (IEC), which is subsequently utilized by sulfate-reducing bacteria. In this paper, six methanogenic substrates are tested as candidate-IECs by assessing their effect on AOM and SR by an anaerobic methanotrophic enrichment. The presence of acetate, formate or hydrogen enhanced SR, but did not inhibit AOM, nor did these substrates trigger methanogenesis. Carbon monoxide also enhanced SR but slightly inhibited AOM. Methanol did not enhance SR nor did it inhibit AOM, and methanethiol inhibited both SR and AOM completely. Subsequently, it was calculated at which candidate-IEC concentrations no more Gibbs free energy can be conserved from their production from methane at the applied conditions. These concentrations were at least 1,000 times lower can the final candidate-IEC concentration in the bulk liquid. Therefore, the tested candidate-IECs could not have been produced from methane during the incubations. Hence, acetate, formate, methanol, carbon monoxide, and hydrogen can be excluded as sole IEC in AOM coupled to SR. Methanethiol did inhibit AOM and can therefore not be excluded as IEC by this study.  相似文献   

17.
Sulfate reduction in methanogenic bioreactors   总被引:9,自引:0,他引:9  
Abstract: In the anaerobic treatment of sulfate-containing wastewater, sulfate reduction interferes with methanogenesis. Both mutualistic and competitive interactions between sulfate-reducing bacteria and methanogenic bacteria have been observed. Sulfate reducers will compete with methanogens for the common substrates hydrogen, formate and acetate. In general, sulfate reducers have better growth kinetic properties than methanogens, but additional factors which may be of importance in the competition are adherence properties, mixed substrate utilization, affinity for sulfate of sulfate reducers, relative numbers of bacteria, and reactor conditions such as pH, temperature and sulfide concentration. Sulfate reducers also compete with syntrophic methanogenic consortia involved in the degradation of substrates like propionate and butyrate. In the absence of sulfate these methanogenic consortia are very important, but in the presence of sulfate they are thought to be easily outcompeted by sulfate reducers. However, at relatively low sulfate concentrations, syntrophic degradation of propionate and butyrate coupled to HZ removal via sulfate reduction rather than via methanogenesis may become important. A remarkable feature of some sulfate reducers is their ability to grow fermentatively or to grow in syntrophic association with methanogens in the absence of sulfate.  相似文献   

18.
Sulfate reduction outcompeted methanogenesis at 65 degrees C and pH 7.5 in methanol and sulfate-fed expanded granular sludge bed reactors operated at hydraulic retention times (HRT) of 14 and 3.5 h, both under methanol-limiting and methanol-overloading conditions. After 100 and 50 days for the reactors operated at 14 and 3.5 h, respectively, sulfide production accounted for 80% of the methanol-COD consumed by the sludge. The specific methanogenic activity on methanol of the sludge from a reactor operated at HRTs of down to 3.5 h for a period of 4 months gradually decreased from 0. 83 gCOD. gVSS(-1). day(-1) at the start to a value of less than 0.05 gCOD. gVSS(-1). day(-1), showing that the relative number of methanogens decreased and eventually became very low. By contrast, the increase of the specific sulfidogenic activity of sludge from 0. 22 gCOD. gVSS(-1). day(-1) to a final value of 1.05 gCOD. gVSS(-1). day(-1) showed that sulfate reducing bacteria were enriched. Methanol degradation by a methanogenic culture obtained from a reactor by serial dilution of the sludge was inhibited in the presence of vancomycin, indicating that methanogenesis directly from methanol was not important. H(2)/CO(2) and formate, but not acetate, were degraded to methane in the presence of vancomycin. These results indicated that methanol degradation to methane occurs via the intermediates H(2)/CO(2) and formate. The high and low specific methanogenic activity of sludge on H(2)/CO(2) and formate, respectively, indicated that the former substrate probably acts as the main electron donor for the methanogens during methanol degradation. As sulfate reduction in the sludge was also strongly supported by hydrogen, competition between sulfate reducing bacteria and methanogens in the sludge seemed to be mainly for this substrate. Sulfate elimination rates of up to 15 gSO(4)(2-)/L per day were achieved in the reactors. Biomass retention limited the sulfate elimination rate.  相似文献   

19.
An endospore-forming, butyrate-degrading bacterium (strain BH) was grown on butyrate in monoxenic coculture with a methanogen. The culture formed dense aggregates when Methanobacterium formicicum was the methanogenic partner, but the culture was turbid when Methanospirillum hungatei was the partner. In contrast, a propionate-degrading, lemon-shaped bacterium (strain PT) did not form aggregates with Methanobacterium formicicum unless an acetate-degrading Methanosaeta sp. was also included in the culture. Fatty acid-degrading methanogenic granules were formed in a laboratory-scale upflow reactor at 35(deg)C fed with a medium containing a mixture of acetate, propionate, and butyrate by using defined cultures of Methanobacterium formicicum T1N, Methanosaeta sp. strain M7, Methanosarcina mazei T18, propionate-degrading strain PT, and butyrate-degrading strain BH. The maximum substrate conversion rates of these granules for acetate, propionate, and butyrate were 43, 9, and 17 mmol/g (dry weight)/day, respectively. The average size of the granules was about 1 mm. Electron microscopic observation of the granules revealed that the cells of Methanobacterium formicicum, Methanosaeta sp., butyrate-degrading, and propionate-degrading bacteria were dispersed in the granules. Methanosarcina mazei existed inside the granules as aggregates of its own cells, which were associated with the bulk of the granules. The interaction of different species in aggregate formation and granule formation is discussed in relation to polymer formation of the cell surface.  相似文献   

20.
Summary The degradation of acetate, propionate and butyrate was monitored during start-up of five lab-scale methanogenic fluidized bed reactors on an artificially prepared waste water. The acetate concentration in the reactor content was found to influence the degradation of propionate but not of butyrate. In general, at acetate levels over 200 mg/l the degradation of propionate was below 60%, whereas the degradation was complete at acetate levels under 100 mg/l. The rationale of the inhibition of propionate degradation by acetate is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号